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Chapter # 5 State-Variable Analysis 

After completing this chapter, the students will be able to: 

• obtain the dynamic equation of a control system, 

• Model electrical circuits in state space, 

• Convert a transfer function to a state space (Decomposition), 

• Convert a state space to a transfer function, 

• Perform transformations between similar systems using transformation 

matrices, 

• Find the time-domain solution of state equation. 

 
1. Introduction 

The classical control theory and methods that we have been using in class are based 

on a simple input-output description of the plant, usually expressed as a transfer 

function. These methods do not use any knowledge of the interior structure of the 

plant, and limit us to single-input single-output (SISO) systems, and as we have seen 

allows only limited control of the closed-loop behavior when feedback control is 

used. 
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Modern control theory solves many of the limitations by using a much “richer” 

description of the plant dynamics. The so-called state-space description provide the 

dynamics as a set of coupled first-order differential equations in a set of internal 

variables known as state variables, together with a set of algebraic equations that 

combine the state variables into physical output variables. 

To begin with the state-variable approach, we should first begin with the definitions 

of the following keywords: 

State: The concept of the state of a dynamic system refers to a minimum set of 

variables, known as state variables, that fully describe the system and its response to 

any given set of inputs. In particular a state-determined system model has the 

characteristic that: 

A mathematical description of the system in terms of a minimum set of variables 

xi(t), i = 1, . . . , n, together with knowledge of those variables at an initial time t0 and 

the system inputs for time t ≥ t0, are sufficient to predict the future system state and 

outputs for all time t > t0. Note that, in dealing with linear time-invariant systems, we 

usually choose the reference time t0 to be zero. 

State Variables: are the smallest set of variables needed to fully describe the 

dynamic system. 

State Vector: if there are n state variables {x1(t), x2(t), ..., xn(t)} that are needed to 

completely describe the behavior of a given system, then these n state variables can 

be considered as the n components of a vector x(t). such a vector is called a state 

vector. 

State Space: the n-dimensional space whose coordinate axes consist of the x1 axis, x2 

axis, ..., xn axis is called a state space. Any state can be represented by a point in the 

state space. 

2. State, Output and Dynamic Equations 

 Consider the system shown in Fig. 1. 
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Fig. 1, Control system with input u(t) and output y(t) 

Assume we have the set of n state variables (𝑥1, 𝑥2, …… . , 𝑥𝑛) that can describe the 

above system. Therefore, the relation that govern the derivative of the state variable 

with the state variables and the system input is called the state equation. 

�̇�1 = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯+ 𝑎1𝑛𝑥𝑛 + 𝑏11𝑢1 + ⋯+ 𝑏1𝑚𝑢𝑚 

�̇�2 = 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯+ 𝑎2𝑛𝑥𝑛 + 𝑏21𝑢1 + ⋯+ 𝑏2𝑚𝑢𝑚 

. 

. 

�̇�𝑛 = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 + 𝑏𝑛1𝑢1 + ⋯+ 𝑏𝑛𝑚𝑢𝑚 

The above equations can be arranged in matrix form as: 

[

�̇�1

�̇�2

⋮
�̇�𝑛

] = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ … … ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] + [

𝑏11 𝑏12 … 𝑏1𝑚

𝑏21 𝑏22 … 𝑏2𝑚

⋮ … … ⋮
𝑏𝑛1 𝑏𝑛2 … 𝑏𝑛𝑚

] [

𝑢1
𝑢2

⋮
𝑢𝑚

] 

Or 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)         (1) 

where, the state vector x(t) is with dimension n×1 and is given as: 

𝑥(𝑡) = [

𝑥1

𝑥2

⋮
𝑥𝑛

], 

the system matrix A is square matrix with dimension n×n and is given as: 

 𝐴 = [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ … … ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

], 

the input matrix B is with dimension n×m and is given as: 

 𝐵 = [
𝑏11 … 𝑏1𝑚

⋮ … ⋮
𝑏𝑛1 … 𝑏𝑛𝑚

], 
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the input vector u(t) is with dimension m×1 and is given as: 

𝑢(𝑡) = [

𝑢1

⋮
𝑢𝑚

] 

On the other hand, the relation that govern the system output with the state variables 

and the system input is called the output equation. 

𝑦1 = 𝑐11𝑥1 + 𝑐12𝑥2 + ⋯+ 𝑐1𝑛𝑥𝑛 + 𝑑11𝑢1 + ⋯+ 𝑑1𝑚𝑢𝑚 

𝑦2 = 𝑐21𝑥1 + 𝑐22𝑥2 + ⋯+ 𝑐2𝑛𝑥𝑛 + 𝑑21𝑢1 + ⋯+ 𝑑2𝑚𝑢𝑚 

. 

. 

𝑦𝑘 = 𝑐𝑘1𝑥1 + 𝑐𝑘2𝑥2 + ⋯+ 𝑐𝑘𝑛𝑥𝑛 + 𝑑𝑘1𝑢1 + ⋯+ 𝑑𝑘𝑚𝑢𝑚 

Or 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)       (2) 

[

𝑦1

𝑦2

⋮
𝑦𝑘

] = [

𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

⋮ … … ⋮
𝑐𝑘1 𝑐𝑘2 … 𝑐𝑘𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] + [

𝑑11 𝑑12 … 𝑑1𝑚

𝑑21 𝑑22 … 𝑑2𝑚

⋮ … … ⋮
𝑑𝑘1 𝑑𝑘2 … 𝑐𝑑𝑘𝑚

] [

𝑢1
𝑢2

⋮
𝑢𝑚

] 

where, the output vector y(t) is with dimension k×1 and is given as: 

[

𝑦1

𝑦2

⋮
𝑦𝑘

] 

the system matrix C is with dimension k×n and is given as: 

[

𝑐11 𝑐12 … 𝑐1𝑛

𝑐21 𝑐22 … 𝑐2𝑛

⋮ … … ⋮
𝑐𝑘1 𝑐𝑘2 … 𝑐𝑘𝑛

] 

the system direct-link, feed-forward matrix D is with dimension k×m and is given as: 

 

[

𝑑11 𝑑12 … 𝑑1𝑚

𝑑21 𝑑22 … 𝑑2𝑚

⋮ … … ⋮
𝑑𝑘1 𝑑𝑘2 … 𝑑𝑘𝑚

] 

Both of the state equation given by (1) and the output equation given by (2) together 

are called the dynamic equation. 
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�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

The choice of state variables for a given system is not unique. The requirement in 

choosing the state variables is that they be linearly independent and that a minimum 

number of them be chosen. 

The dynamic equation given above can be expressed by vector block diagram 

representation shown in Fig. 2. This general block diagram shows the matrix 

operations from input to output in terms of the A, B, C, D matrices, but does not 

show the path of individual variables. 

 

Fig. 2, Vector block diagram for linear system described by dynamic equation 

Matrix A is called the system matrix, 

Matrix B is called the input matrix, 

Matrix C is called the output matrix, 

Matrix D is called the feedforward matrix. 

 

3. Representing an Electrical Network 

Example (1): 

Drive the dynamic equation for the electric circuit shown in Fig. 3. 

 

Fig. 3, RLC circuit 

First, we assume the state variables are x1= vc  and x2 = iL, and the output y = vo 

𝑢(𝑡) =  𝑖𝐿 + 𝑖𝑐 
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𝑖𝑐 = 𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝑢(𝑡) − 𝑖𝐿 ------→ 

𝑑𝑣𝑐

𝑑𝑡
=

1

𝐶
𝑢(𝑡) −

1

𝐶
𝑖𝐿 

𝐿
𝑑𝑖𝐿

𝑑𝑡
+ 𝑅𝑖𝐿 = 𝑣𝑐     -----→ 

𝑑𝑖𝐿

𝑑𝑡
=

1

𝐿
𝑣𝑐 −

𝑅

𝐿
𝑖𝐿 

𝑣𝑜 = 𝑅𝑖𝐿 ----------→ 𝑦 = 𝑅𝑖𝐿 

then the state space model is 

�̇�1(𝑡) =
1

𝐶
𝑢(𝑡) −

1

𝐶
𝑥2 

�̇�2(𝑡) =
1

𝐿
𝑥1 −

𝑅

𝐿
𝑥2 

𝑦(𝑡) = 𝑅𝑥2 

Then, we can rearrange the above equations in matrix form as follows: 

[
�̇�1

�̇�2
] = [

0 −
1

𝐶
1

𝐿
−

𝑅

𝐿

] [
𝑥1

𝑥2
] + [

1

𝐶
0

]  𝑢 

𝑦 =  [0 𝑅] [
𝑥1

𝑥2
] + [0] 𝑢 

We can plot the state and block diagrams as shown in Fig. 4 a and b, respectively. 

 
Fig. 4, state diagram and block diagram of example #1. 

Example (2): 

Given the electrical network of Fig. 5, find a state-space representation if the output 

is the voltage across the resistor. 
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Fig. 5, RLC circuit of example 2. 

Choose the state variables as the quantities that are differentiated, namely vc and iL 

First, we assume the state variables are x1= vc  and x2 = iL, and the output y = vR 

𝑖𝐿 = 𝑖𝑅 + 𝑖𝑐 

𝑖𝑐 = 𝐶
𝑑𝑣𝑐

𝑑𝑡
 & 𝑖𝑅 =

𝑣𝑐

𝑅
 ------→ 𝑖𝐿 =

𝑣𝑐

𝑅
+ 𝐶

𝑑𝑣𝑐

𝑑𝑡
  →   

𝑑𝑣𝑐

𝑑𝑡
= �̇�1 =

1

𝐶
𝑥2 −

1

𝑅𝐶
𝑥1   (1) 

𝑣(𝑡) =  𝐿
𝑑𝑖𝐿

𝑑𝑡
+ 𝑣𝑐   →   

𝑑𝑖𝐿

𝑑𝑡
= �̇�2 =

1

𝐿
𝑣(𝑡) −

1

𝐿
𝑥1                     (2) 

𝑦 = 𝑅𝑖𝑅 ----------→ 𝑦 = 𝑣𝑐 = 𝑥1                    (3) 

Eqns. (1), (2) and (3) can be represented in matrix form as: 

[
�̇�1

�̇�2
] = [

−
1

𝑅𝐶

1

𝐶

−
1

𝐿
0

] [
𝑥1

𝑥2
] + [

0
1

𝐿

]  𝑣(𝑡) 

𝑦 =  [1 0] [
𝑥1

𝑥2
] + [0] 𝑢 

Example (3) 

Find the state and output equations for the electrical network shown in Fig. 6, if the 

output vector is y = [IR2  VR1]T. 

 
Fig. 6, electric network of example #3 

Select the state variables as:    x1 = iL &   x2= vc   

For the mesh loop containing L and C we obtain that: 

          (1) 
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At node 2, 

 

Substituting the value of iR2 in eqn. (1): 

 

      (2) 

From eqn. (2), vc is a state variable. But ic is not, so we need to replace it by one of 

the two state variables. 

At node 1, 

 
Since vR1 = vL, 

       (3) 

Substituting from (3) into (2): 

 

𝑣𝐿 (1 − 4𝑅2 +
𝑅2

𝑅1
) = 𝑣𝑐 + 𝑅2𝑖(𝑡) − 𝑅2𝑖𝐿 

𝐿
𝑑𝑖𝐿
𝑑𝑡

(
𝑅1 − 4𝑅1𝑅2 + 𝑅2

𝑅1
) = 𝑣𝑐 + 𝑅2𝑖(𝑡) − 𝑅2𝑖𝐿 

𝐿
𝑑𝑖𝐿
𝑑𝑡

=
𝑅1

𝑅1 − 4𝑅1𝑅2 + 𝑅2

(𝑣𝑐 + 𝑅2𝑖(𝑡) − 𝑅2𝑖𝐿)     (4) 

Assuming that ∆=
𝑅1

𝑅1−4𝑅1𝑅2+𝑅2
, 

𝑑𝑖𝐿

𝑑𝑡
=

∆

𝐿
(𝑣𝑐 + 𝑅2𝑖(𝑡) − 𝑅2𝑖𝐿)→ �̇�1 =

∆

𝐿
𝑥2 −

∆𝑅2

𝐿
𝑥1 +

∆𝑅2

𝐿
𝑖(𝑡)    (5) 

Also, we can substitute from (4) into (3) 

𝑖𝑐 = 𝑖(𝑡) −
∆

𝑅1

(𝑣𝑐 + 𝑅2𝑖(𝑡) − 𝑅2𝑖𝐿) − 𝑖𝐿 

𝐶
𝑑𝑣𝑐

𝑑𝑡
= 𝑖(𝑡) (1 −

∆𝑅2

𝑅1
) − 𝑖𝐿 (1 −

∆𝑅2

𝑅1
) −

∆

𝑅1
𝑣𝑐 
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𝑑𝑣𝑐

𝑑𝑡
= 𝑖(𝑡) (

1

𝐶
−

∆𝑅2

𝐶𝑅1
) − 𝑖𝐿 (

1

𝐶
−

∆𝑅2

𝐶𝑅1
) −

∆

𝐶𝑅1
𝑣𝑐 

�̇�2 = 𝑖(𝑡) (
1

𝐶
−

∆𝑅2

𝐶𝑅1
) − (

1

𝐶
−

∆𝑅2

𝐶𝑅1
) 𝑥1 −

∆

𝐶𝑅1
𝑥2       (6) 

To get an expression for the output iR2, we can use eqn. (1) and replace vL with its 

value obtained from eqn. (4): 

𝑖𝑅2 = 𝑦1 =
𝑣𝐿 − 𝑣𝑐

𝑅2
=

∆𝑣𝑐 − ∆𝑅2 𝑖(𝑡) − ∆𝑅2𝑖𝐿 − 𝑣𝑐

𝑅2
= 𝑣𝑐

∆ − 1

𝑅2
+ ∆𝑖(𝑡) − ∆𝑖𝐿 

𝑦1 =
∆ − 1

𝑅2
𝑥2 + ∆𝑖(𝑡) − ∆𝑥1       (7) 

The expression for the output vR1 is vL and replace vL with its value obtained from 

eqn. (4): 

𝑣𝑅2 = 𝑦2 = 𝑣𝐿 = ∆𝑣𝑐 + ∆𝑅2𝑖(𝑡) − ∆𝑅2𝑖𝐿 

𝑦2 = ∆ 𝑥2 + ∆𝑅2𝑖(𝑡) − ∆𝑅2𝑥1      (8) 

Representing eqns. (5), (6), (7) and (8) in matrix from: 

[
�̇�1

�̇�2
] =

[
 
 
 

∆𝑅2

𝐿

∆

𝐿

−(
1

𝐶
−

∆𝑅2

𝐶𝑅1
) −

∆

𝐶𝑅1]
 
 
 
[
𝑥1

𝑥2
] +

[
 
 
 

∆𝑅2

𝐿

(
1

𝐶
−

∆𝑅2

𝐶𝑅1
)
]
 
 
 
 𝑖(𝑡) 

[
𝑦1

𝑦2
] = [

−∆
∆ − 1

𝑅2

−∆𝑅2 ∆

] [
𝑥1

𝑥2
] + [

∆
∆𝑅2

]  𝑖(𝑡) 

 

4. Converting a Transfer Function to State Space (Decomposition) 

One advantage of the state-space representation is that it can be used for the 

simulation of physical systems on the digital computer. Thus, if we want to simulate 

a system that is represented by a transfer function, we must first convert the transfer 

function representation to state space. At first, we select a set of state variables, called 

phase variables, where each subsequent state variable is defined to be the derivative 

of the previous state variable. 
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4.1 Converting a Transfer Function with Constant Term in Numerator 

Example (4) 

Find the state-space representation in phase-variable form for the transfer function 

given below: 

𝐶(𝑠)

𝑅(𝑠)
=

24

𝑆3 + 9𝑆2 + 26𝑆 + 24
 

Cross-multiplying yields 

(𝑆3 + 9𝑆2 + 26𝑆 + 24)𝐶(𝑠) = 24𝑅(𝑠) 

The corresponding differential equation is found by taking the inverse Laplace 

transform, assuming zero initial conditions: 

𝑑3𝑐(𝑡)

𝑑𝑡3
+ 9

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 26

𝑑𝑐(𝑡)

𝑑𝑡
+ 24𝑐(𝑡) = 24𝑟(𝑡) 

Let x1(t) = c(t)    →   �̇�1(𝑡) =
𝑑𝑐(𝑡)

𝑑𝑡
   →   �̇�1(𝑡) = x2(t) 

Also, x2(t) = 
𝑑𝑐(𝑡)

𝑑𝑡
    →   �̇�2(𝑡) =

𝑑2𝑐(𝑡)

𝑑𝑡2
          →   �̇�2(𝑡) = x3(t) 

Also,  x3(t) = 
𝑑2𝑐(𝑡)

𝑑𝑡2
 → �̇�3(𝑡) =  

𝑑3𝑐(𝑡)

𝑑𝑡3
  → �̇�3(𝑡) = 24𝑟(𝑡) − 24𝑥1(𝑡) − 26𝑥2(𝑡) − 9𝑥3(𝑡) 

The above 3 equations can be represented by the equivalent block diagram, shown in 

Fig. 7, that represents the phase variables. 

 

Fig. 7, Block diagram shows the phase variables 

The above equation can be rearranged in matrix form as: 

The state equation: 
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[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−24 −26 −9
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
24

]  𝑟(𝑡) 

Notice that the third row of the system matrix has the same coefficients as the 

denominator of the transfer function but negative and in reverse order. The matrix A 

obtained is with dimension 3×3 and matrix B obtained is with dimension 3×1 are in 

phase variable canonical form. 

The output equation: 

𝑐(𝑡) =  [1 0 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑟(𝑡) 

Example (5): 

For the 3rd order differential equation describing a control system with input signal 

e(t) and output signal c(t) given below, write the dynamic equation. 

𝑑3𝑐(𝑡)

𝑑𝑡3
+ 4

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 5

𝑑𝑐(𝑡)

𝑑𝑡
+ 3𝑐(𝑡) = 5𝑒(𝑡) 

Let x1(t) = c(t)    →   �̇�1(𝑡) =
𝑑𝑐(𝑡)

𝑑𝑡
   →   �̇�1(𝑡) = x2(t) 

Also, x2(t) = 
𝑑𝑐(𝑡)

𝑑𝑡
    →   �̇�2(𝑡) =

𝑑2𝑐(𝑡)

𝑑𝑡2
          →   �̇�2(𝑡) = x3(t) 

Also,  x3(t) = 
𝑑2𝑐(𝑡)

𝑑𝑡2
 → �̇�3(𝑡) =  

𝑑3𝑐(𝑡)

𝑑𝑡3
  → �̇�3(𝑡) = 5𝑒(𝑡) − 3𝑥1(𝑡) − 5𝑥2(𝑡) − 4𝑥3(𝑡) 

The output c(t) = x1(t) 

The above equation can be rearranged in matrix form as: 

The state equation: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−3 −5 −4
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
5
]  𝑒 

The output equation: 

𝑐(𝑡) =  [1 0 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑒 

Example (6): 
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For the 3rd order differential equation describing a control system with input signal 

r(t) and output signal c(t) given below, write the dynamic equation. 

𝑑3𝑐(𝑡)

𝑑𝑡3
+ 6

𝑑𝑐(𝑡)

𝑑𝑡
+ 5𝑐(𝑡) = 𝑟(𝑡) 

Let x1(t) = c(t)    →   �̇�1(𝑡) =
𝑑𝑐(𝑡)

𝑑𝑡
   →   �̇�1(𝑡) = x2(t) 

Also, x2(t) = 
𝑑𝑐(𝑡)

𝑑𝑡
    →   �̇�2(𝑡) =

𝑑2𝑐(𝑡)

𝑑𝑡2
          →   �̇�2(𝑡) = x3(t) 

Also,  x3(t) = 
𝑑2𝑐(𝑡)

𝑑𝑡2
 → �̇�3(𝑡) =  

𝑑3𝑐(𝑡)

𝑑𝑡3
  → �̇�3(𝑡) = 𝑟(𝑡) − 5𝑥1(𝑡) − 6𝑥2(𝑡) 

The output c(t) = x1(t) 

The above equation can be rearranged in matrix form as: 

The state equation: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−5 −6 0
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
1
]  𝑟(𝑡) 

The output equation: 

𝑐(𝑡) =  [1 0 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑟(𝑡) 

Example (7): 

For the 2nd order differential equation with input derivative given below, write the 

state equation. 

3
𝑑2𝑐(𝑡)

𝑑𝑡2
+ 3

𝑑𝑐(𝑡)

𝑑𝑡
+ 𝑐(𝑡) =

𝑑𝑟(𝑡)

𝑑𝑡
 

Since there is input derivative, we integrate both sides 

3
𝑑𝑐(𝑡)

𝑑𝑡
+ 3 𝑐(𝑡) + ∫ 𝑐(𝑡) = 𝑟(𝑡) 

Let 𝑥1(𝑡)  =  ∫ 𝑐(𝑡)    →   �̇�1(𝑡) = 𝑐(𝑡)   →   �̇�1(𝑡) = x2(t) 

Also, x2(t) = c(t)    →   �̇�2(𝑡) =
𝑑𝑐(𝑡)

𝑑𝑡
          →   �̇�2(𝑡) =

1

3
{𝑟(𝑡) − 𝑥1(𝑡) − 3𝑥2(𝑡)} 
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[
�̇�1

�̇�2
] = [

0 1

−
1

3
−1

] [
𝑥1

𝑥2
] + [

0
1

3

]  𝑟(𝑡) 

4.2 Converting a Transfer Function with Polynomial in Numerator 

There are three types of decomposition: Direct decomposition, Cascaded decomposition 

and Parallel decomposition 

4.2.1 Direct Decomposition: 

Example (8): 

Consider the system T.F. is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆2 + 7𝑆 + 2

𝑆3 + 9𝑆2 + 26𝑆 + 24
 

 

 

Step #1 

All the power of S must be negative; this can be achieved by dividing by S3 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−1 + 7𝑆−2 + 2𝑆−3

1 + 9𝑆−1 + 26𝑆−2 + 24𝑆−3
 

Step #2 

Multiply both the numerator and denominator by dummy variable X(S) 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−1 + 7𝑆−2 + 2𝑆−3

1 + 9𝑆−1 + 26𝑆−2 + 24𝑆−3
×

𝑋(𝑆)

𝑋(𝑆)
 

Step #3      Equating numerators 

𝐶(𝑆) = (𝑆−1 + 7𝑆−2 + 2𝑆−3) 𝑋(𝑆) 

𝐶(𝑆) = 𝑆−1𝑋(𝑆) + 7𝑆−2𝑋(𝑆) + 2𝑆−3𝑋(𝑆)        (1) 

Step #4      Equating denominators 
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𝑅(𝑆) = (1 + 9𝑆−1 + 26𝑆−2 + 24𝑆−3) 𝑋(𝑆) 

𝑋(𝑆) = 𝑅(𝑆) − 9𝑆−1𝑋(𝑆) − 26𝑆−2𝑋(𝑆) − 24𝑆−3𝑋(𝑆)     (2) 

Both of eqns. (1) and (2) can be represented by the block diagram shown in Fig. 8. 

 

Fig. 8, block diagram representing decomposed transfer function 

Step #5 Convert the block diagram to state diagram as shown below. 

 

 

 

 

 

 

 

 

Step #6 Rename the state variables (after each integrator) from right to left, and 

remove the integrator S-1 as shown in the state diagram given below. 

 

 

 S-1 X(S) S-2 X(S) S-3 X(S) 
U(S) 

S-1 S-1 S-1 Y(S) 
2 

7 

1 

− 9  

− 26 

− 24 

1 
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Step #7 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = 𝑥2 

�̇�2(𝑡) = 𝑥3 

�̇�3(𝑡) = 𝑢 − 9𝑥3 − 26𝑥2 − 24𝑥1 

𝑦 = 2𝑥1 + 7𝑥2 + 𝑥3 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−24 −26 −9
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
1
]  𝑢(𝑡) 

Which is phase variable canonical form. 

𝑦(𝑡) =  [2 7 1] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

Use Matlab code to obtain the 4 matrices from the given T.F.: 

Num = [1 7 2]; 

Den = [1 9 26 24]; 

 [A, B, C, D] = tf2ss(Num, Den) 

Example (9): 

Consider the system T.F. is: 

𝑌(𝑠)

𝑈(𝑠)
=

10(𝑆 + 1)

(𝑆 + 2)2(𝑆 + 5)
 

X3 X3 
X2 X1 

U(S) Y(S) 
2 

7 

1 

− 9  

− 26 

− 24 

X1 
. . 

. 

X2 

1 
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Both numerator and denominator of the T.F. must be in polynomial format as: 

𝑌(𝑠)

𝑈(𝑠)
= 10

𝑆 + 1

𝑆3 + 9𝑆2 + 24𝑆 + 20
 

Step #1 

All the power of S must be negative; this can be achieved by dividing by S3 

𝑌(𝑠)

𝑈(𝑠)
=

𝑆−2 + 𝑆−3

1 + 9𝑆−1 + 24𝑆−2 + 20𝑆−3
 

Step #2 

Multiply both the numerator and denominator by dummy variable X(S) 

𝑌(𝑠)

𝑈(𝑠)
=

𝑆−2 + 𝑆−3

1 + 9𝑆−1 + 24𝑆−2 + 20𝑆−3
×

𝑋(𝑆)

𝑋(𝑆)
 

Step #3 Equating numerators 

𝑌(𝑆) = (𝑆−2 + 𝑆−3) 𝑋(𝑆) 

𝑌(𝑆) = 𝑆−2𝑋(𝑆) + 𝑆−3𝑋(𝑆)        (1) 

Step #4    Equating denominators 

𝑈(𝑆) = (1 + 9𝑆−1 + 24𝑆−2 + 20𝑆−3) 𝑋(𝑆) 

𝑋(𝑆) = 𝑈(𝑆) − 9𝑆−1𝑋(𝑆) − 24𝑆−2𝑋(𝑆) − 20𝑆−3𝑋(𝑆)     (2) 

 

 

Step #5 

Using Eqns. (1) and (2) to draw the sate diagram as shown below: 

 

 

 

 

 

 

 

𝑆−2 + 𝑆−3 
1

1 + 9𝑆−1 + 24𝑆−2 + 20𝑆−3
 

U(S) X(S) Y(S) 

X(S) S-1 X(S) S-2 X(S) S-3 X(S) 
U(S) 

S-1 S-1 S-1 Y(S) 
1 

1 

10 

− 9  

− 24 

− 20 
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Step #6 

Rename the state variables (after each integrator) from right to left, and remove the 

integrator S-1 as shown in the state diagram given below. 

 

 

 

 

 

 

Step #7 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = 𝑥2 

�̇�2(𝑡) = 𝑥3 

�̇�3(𝑡) = 10𝑢 − 9𝑥3 − 24𝑥2 − 20𝑥1 

𝑦 = 𝑥1 + 𝑥2 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−20 −24 −9
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
10

]  𝑢(𝑡) 

𝑦(𝑡) =  [1 1 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

4.2.2 Cascaded Decomposition: 

Example (10): 

Consider the system given below: 

 

 
Fig. 9, Cascaded block diagram 

X3 X3 
X2 X1 

U(S) Y(S) 
1 

1 

10 

− 9  

− 24 

− 20 

X1 
. . 

. 

X2 
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The block diagram representation of this system (Fig. 9) formed by cascading each 

term of the system T.F. The output of each first-order system block has been labelled 

as a state variable. These state variables are not the phase variables. 

 

 

 

 

 

 
Example (11): 

Consider the system T.F. is: 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

𝑆3 + 6𝑆2 + 11𝑆 + 6
 

Both numerator and denominator of the T.F. must be in factorized format as: 

𝑌(𝑠)

𝑈(𝑠)
=

5(𝑆 + 4)

(𝑆 + 1)(𝑆 + 2)(𝑆 + 3)
 

𝑌(𝑠)

𝑈(𝑠)
= 5

1

(𝑆 + 1)
×

(𝑆 + 4)

(𝑆 + 2)
×

1

(𝑆 + 3)
 

Using direct decomposition, obtain the state diagram for each part of the T.F. 
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𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑆 + 1)
 

𝑌(𝑠)

𝑈(𝑠)
=

1

𝑆 + 1
=

1 𝑆−1

1 + 𝑆−1
×

𝑋(𝑆)

𝑋(𝑆)
 

𝑌(𝑠) = 1 𝑆−1𝑋(𝑆) 

𝑈(𝑆) = 𝑋(𝑆) + 𝑆−1𝑋(𝑆) 

𝑋(𝑆) = 𝑈(𝑆) − 𝑆−1𝑋(𝑆) 

The state diagram of this part is as shown below: 

 

 

 

The term 
𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑆+3)
 is similar to the term 

𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑆+1)
, so its sate diagram will be: 

 

 

 

Using direct decomposition, obtain the state diagram for the part of the T.F. 

𝑌(𝑠)

𝑈(𝑠)
=

(𝑆 + 4)

(𝑆 + 2)
 

𝑌(𝑠)

𝑈(𝑠)
=

𝑆 + 4

𝑆 + 2
=

1 + 4 𝑆−1

1 + 2 𝑆−1
×

𝑋(𝑆)

𝑋(𝑆)
 

𝑌(𝑠) = 𝑋(𝑆) + 4 𝑆−1𝑋(𝑆) 

𝑈(𝑆) = 𝑋(𝑆) + 2𝑆−1𝑋(𝑆) 

𝑋(𝑆) = 𝑈(𝑆) − 2𝑆−1𝑋(𝑆) 

 

 

 

 

Now all the above state diagrams are gathered in one as shown below 

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

1 

− 1  

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

1 

− 3  

 S-1 X(S) X(S) U(S) 4 S-1 
Y(S) 

1 

− 2  

1 
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Remove the integrator (S-1) and rename the state variables as shown below: 

 

 

 

 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = −3𝑥1 + 4𝑥2 − 2𝑥2 + 𝑥3 

�̇�2(𝑡) = −2𝑥2 + 𝑥3 

�̇�3(𝑡) = 5𝑢 − 𝑥3 

𝑦 = 𝑥1 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
−3 2 1
0 −2 1
0 0 −1

] [
𝑥1

𝑥2
𝑥3

] + [
0
0
5
]  𝑢(𝑡) 

𝑦(𝑡) =  [1 0 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

the A matrix is the system matrix which contains the system poles along the diagonal. 

Compare this matrix to the phase-variable representation obtained from direct 

decomposition. In that representation, the coefficients of the system’s characteristic 

polynomial appeared along the last row, whereas in our current representation, the 

roots of the characteristic equation, the system poles, appear along the diagonal. 

4.2.3 Parallel Decomposition: 

Example (12): 

Consider the system T.F. is: 

 S-1 X(S) X(S) U(S) 1 S-1 5 

− 1  

 S-1 X(S) X(S) 4 S-1 1 

− 2  

1 

 S-1 X(S) X(S) 1 S-1 
Y(S) 

1 

− 3  

 X3(S) X3 (S) U(S) 1 5 

− 1  

 X2(S) X2(S) 

4 

1 

− 2  

1 

 X1(S) X1(S) 1 

Y(S) 

1 

− 3  

. . . 
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This third representation yields a diagonal system matrix.  

Example (13) 

Consider the system T.F. is: 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

𝑆3 + 6𝑆2 + 11𝑆 + 6
 

The numerator must be polynomial but denominator must be in factorized format as: 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

(𝑆 + 1)(𝑆 + 2)(𝑆 + 3)
 

Using partial fraction: 

5𝑆 + 20

(𝑆 + 1)(𝑆 + 2)(𝑆 + 3)
=  

𝐴

𝑆 + 1
+

𝐵

𝑆 + 2
+

𝐶

𝑆 + 3
 

Multiply both sides by (S+1)(S+2)(S+3) 
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5𝑆 + 20 = 𝐴(𝑆 + 2)(𝑆 + 3) + 𝐵(𝑆 + 1)(𝑆 + 3) + 𝐶(𝑆 + 1)(𝑆 + 2) 

At S= -1 → 15 = 2A → A= 7.5 

At S= -2 → 10 = -B → B = - 10 

At S= -3 → 5 = 2 C → C = 2.5 

𝑌(𝑠)

𝑈(𝑠)
=  

7.5

𝑆 + 1
−

10

𝑆 + 2
+

2.5

𝑆 + 3
 

Using direct decomposition, the state diagram of the term 
𝑌(𝑠)

𝑈(𝑠)
= 

1

𝑆+1
 is given below 

(review the method given in cascaded decomposition): 

 

 

 

By the same way, the sate diagram for the term 
𝑌(𝑠)

𝑈(𝑠)
= 

1

𝑆+2
 is given below, 

 

 

 

By the same way, the sate diagram for the term 
𝑌(𝑠)

𝑈(𝑠)
= 

1

𝑆+3
 is given below, 

 

 

 

The overall state diagram is as follows: 

 

 

 

 

 

 

 

 

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

7.5 

− 1  

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

-10 

− 2  

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

2.5 

− 3  

 S-1 X(S) X(S) 

1 

S-1 

7.5 
− 1  

 S-1 X(S) X(S) 

1 

S-1 

2.5 

− 3  

 S-1 X(S) X(S) 

U(S) 
1 S-1 

Y(S) 
-10 

− 2  
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Remove the integrator (S-1) and rename the state variables as shown below: 

 

 

 

 

 

 

 

 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = 7.5𝑢 − 𝑥1 

�̇�2(𝑡) = −10𝑢 − 2𝑥2 

�̇�3(𝑡) = 2.5𝑢 − 3𝑥3 

𝑦 = 𝑥1 + 𝑥2 + 𝑥3 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
−1 0 0
0 −2 0
0 0 −3

] [
𝑥1

𝑥2
𝑥3

] + [
7.5
−10
2.5

]  𝑢(𝑡) 

Matrix A is a diagonal matrix with the system poles located in the diagonal. 

𝑦(𝑡) =  [1 1 1] [
𝑥1

𝑥2
𝑥3

] + [0]𝑢(𝑡) 

Example (14): 

Using PARALLEL decomposition with MINIMUM integrators, draw the state 

diagram and then write the dynamic equation for the control system described by the 

following T.F. 

 

 

 X1(S) X1(S) 

1 
7.5 

− 1  

 X3(S) X3(S) 

1 2.5 

− 3  

 X2(S) X2(S) 

U(S) 
1 

Y(S) 
-10 

− 2  

. 

. 

. 
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Since there are repeated roots, matrix A given above is in Jordan canonical form. 

Example (15):  

Using PARALLEL decomposition with MINIMUM integrators, draw the state 

diagram and then write the dynamic equation for the control system described by the 

following T.F. 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

(𝑆 + 4)2(𝑆 + 3)3
 

𝑌(𝑠)

𝑈(𝑠)
=

5(𝑆 + 4)

(𝑆 + 4)2(𝑆 + 3)3
=

5

(𝑆 + 4)(𝑆 + 3)3
 

The resulting state space model may or may not contain all poles of the original T.F.,  
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(depending on zero-pole cancellation), If some zeros and poles are cancelled, then the 

resulting state space model will be of reduced order and the corresponding poles will 

not appear in the state space model. 

𝑌(𝑠)

𝑈(𝑠)
=

5

(𝑆 + 4)(𝑆 + 3)3
=

𝐴

𝑆 + 4
+

𝐵

𝑆 + 3
+

𝐶

(𝑆 + 3)2
+

𝐷

(𝑆 + 3)3
 

Multiply both sides by (S+4) (S+3)3 

5 = 𝐴(𝑆 + 3)3 + 𝐵(𝑆 + 4)(𝑆 + 3)2 + 𝐶(𝑆 + 4)(𝑆 + 3) + 𝐷(𝑆 + 4) 

At S= -3, 5 = D(-3+4)  →  D = 5 

At S= -4, 5 = A(-4+3)  →  A = -5 

At S= 0, 5 = 27A+36B+12C+4D substituting with the values of A and D 

36B + 12C = 120     (1) 

At S= 1, 5 = 64A+80B+20C+5D substituting with the values of A and D 

80B + 20C = 300  Multiplying this equation by 0.6, 

48B + 12C = 180      (2) 

Solving (1) and (2) we get B =5 and C = -5 

𝑌(𝑠)

𝑈(𝑠)
=

−5

𝑆 + 4
+

5

𝑆 + 3
+

−5

(𝑆 + 3)2
+

5

(𝑆 + 3)3
 

Using direct decomposition, the state diagram of the term 
𝑌(𝑠)

𝑈(𝑠)
= 

−5

𝑆+4
 is given below 

(review the method given in cascaded decomposition): 

 

 

 

Using direct decomposition, the state diagram of the term 
𝑌(𝑠)

𝑈(𝑠)
= 

5

(𝑆+3)3
 is:  

 

 

 

 

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

-5 

− 4  

Y(S) 

 S-1 X(S) X(S) U(S) 1 S-1 5 

− 3  

 S-1 X(S) 1 S-1 

− 3  

 S-1 X(S) 1 S-1 

− 3  
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Since minimum integrators are needed 

 

 

 

 

 

 

 

 

 

Remove the integrator (S-1) and rename the state variables as shown below 

 

 

 

 

 

 

 

 

 

 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = −3𝑥1+𝑥2 

�̇�2(𝑡) = −3𝑥2 + 𝑥3 

�̇�3(𝑡) = −3𝑥3 + 5𝑢 

�̇�4(𝑡) = −5𝑢 − 4𝑥4 

𝑦 = 𝑥1 − 𝑥2 + 𝑥3 + 𝑥4 

The above equation can be rearranged in matrix form as: 

 S-1 X(S) X(S) 

U(S) 

1 S-1 

5 

− 3  

 S-1 X(S) 1 S-1 

− 3  

 S-1 X(S) 

1 

S-1 

− 3  

 S-1 X(S) X(S) 

1 

1 

S-1 

Y(S) 

-5 

− 4  

-1 

 

U(S) 

1 

5 

− 3  

 1 

− 3  

 

1 

− 3  

 

1 

1 

Y(S) 

-5 

− 4  

-1 

X1 (S) X1 (S) X2 (S) X2 (S) X3 (S) X3 (S) 

X4 (S) X4 (S) 
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[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

−3 1 0  0
0 −3 1  0
0
0

0
0

−3 0
0 −4

] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

0
0
5

−5

]  𝑢(𝑡) 

𝑦(𝑡) =  [1 −1 1 1] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [0]𝑢(𝑡) 

Example (16): 

Consider the control system with the following T.F.: 

𝐶(𝑠)

𝑅(𝑠)
=

13𝑆3 + 173𝑆2 + 600𝑆 + 470

(𝑆2 + 2𝑆 + 2)(𝑆 + 5)(𝑆 + 10)
 

The term (S2+2S+2) gives a pair of complex conjugate poles S+1±j, 

 

Group the complex poles in a second-order function, 

 

The second-order function is treated with direct decomposition, and the rest of 

terms is treated using parallel decomposition. 

 
Write the state and output equation [Dynamic Equation] as follows: 
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�̇�1(𝑡) = −5𝑥1 + 2𝑢 

�̇�2(𝑡) = −10𝑥2 + 3𝑢 

�̇�3(𝑡) = 𝑥4 

�̇�4(𝑡) = −2𝑥3 − 2𝑥4 + 8𝑢 

𝑦 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

−5 0 0  0
0 −10 0  0
0
0

0
0

0 1
−2 −2

] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [

2
3
0
8

]  𝑢(𝑡) 

𝑦(𝑡) =  [1 1 1 1] [

𝑥1

𝑥2
𝑥3

𝑥4

] + [0]𝑢(𝑡) 

Example (17): 

Using CASCADE decomposition, draw the state diagram and then write the 

dynamic equation for the control system described by the following T.F. 

𝑌(𝑠)

𝑈(𝑠)
=

2𝑆2 + 12𝑆 + 10

𝑆3 + 9𝑆2 + 26𝑆 + 24
 

Both numerator and denominator of the T.F. must be in factorized format as: 

𝑌(𝑠)

𝑈(𝑠)
=

2(𝑆 + 1)(𝑆 + 5)

(𝑆 + 2)(𝑆 + 3)(𝑆 + 4)
 

𝑌(𝑠)

𝑈(𝑠)
= 2

1

(𝑆 + 2)
×

(𝑆 + 1)

(𝑆 + 3)
×

(𝑆 + 5)

(𝑆 + 4)
 

Using direct decomposition, obtain the state diagram for each part of the T.F. 

𝑌(𝑠)

𝑈(𝑠)
=

1

(𝑆 + 2)
 

𝑌(𝑠)

𝑈(𝑠)
=

1

𝑆 + 2
=

 𝑆−1

1 + 2𝑆−1
×

𝑋(𝑆)

𝑋(𝑆)
 

𝑌(𝑠) =  𝑆−1𝑋(𝑆) 

𝑈(𝑆) = 𝑋(𝑆) + 2𝑆−1𝑋(𝑆) 

𝑋(𝑆) = 𝑈(𝑆) − 2𝑆−1𝑋(𝑆) 
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The state diagram of this part is as shown below: 

 

 

Using direct decomposition, obtain the state diagram for the part of the T.F. 

𝑌(𝑠)

𝑈(𝑠)
=

(𝑆 + 1)

(𝑆 + 3)
 

𝑌(𝑠)

𝑈(𝑠)
=

𝑆 + 1

𝑆 + 3
=

1 + 𝑆−1

1 + 3 𝑆−1
×

𝑋(𝑆)

𝑋(𝑆)
 

𝑌(𝑠) = 𝑋(𝑆) + 𝑆−1𝑋(𝑆) 

𝑈(𝑆) = 𝑋(𝑆) + 3𝑆−1𝑋(𝑆) 

𝑋(𝑆) = 𝑈(𝑆) − 3𝑆−1𝑋(𝑆) 

 

 

 

 

The term 
𝑌(𝑠)

𝑈(𝑠)
=

(𝑆+5)

(𝑆+4)
 is similar to the term 

𝑌(𝑠)

𝑈(𝑠)
=

(𝑆+1)

(𝑆+3)
, so its sate diagram will be: 

 

 

 

Now all the above state diagrams are gathered in one as shown below 

 

 

 

Remove the integrator (S-1) and rename the state variables as shown below: 

 

 

 

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

1 

− 2  

 S-1 X(S) X(S) U(S) 1 S-1 
Y(S) 

1 

− 3  

1 

 S-1 X(S) X(S) U(S) 5 S-1 
Y(S) 

1 

− 4  

1 

 X3(S) X3 (S) U(S) 1 2 

− 2 

 X2(S) X2(S) 

1 

1 

− 3  

1 

 X1(S) X1(S) 

5 Y(S) 

1 

− 4  

. . . 
1 

 S-1 X(S) X(S) U(S) 

1 

S-1 2 

− 2  

 S-1 X(S) X(S) 

1 

S-1 1 

− 3  

1 

 S-1 X(S) X(S) 

5 

S-1 
Y(S) 

1 

− 4 

1 
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Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = −4𝑥1 + 𝑥2 − 3𝑥2 + 𝑥3 

�̇�2(𝑡) = −3𝑥2 + 𝑥3 

�̇�3(𝑡) = 2𝑢 − 2𝑥3 

𝑦 = 5𝑥1 − 4𝑥1 + 𝑥2 − 3𝑥2 + 𝑥3 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
−4 −2 1
0 −3 1
0 0 −2

] [
𝑥1

𝑥2
𝑥3

] + [
0
0
2
]  𝑢(𝑡) 

𝑦(𝑡) =  [1 −2 1] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

Example (18): 

Represent the feedback control system shown in Fig. 11 in state space. Use cascade 

decomposition to model the forward transfer function. 

 
𝐶(𝑠)

𝐸(𝑠)
= 100

1

(𝑆 + 2)
×

(𝑆 + 5)

(𝑆 + 3)
 

 

 

𝑐(𝑡) = 5𝑥1 − 3𝑥1 + 𝑥2 = 2𝑥1 + 𝑥2 
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𝑒(𝑡) = 𝑟(𝑡) − 𝑐(𝑡) = 𝑟(𝑡) − 2𝑥1 − 𝑥2 

�̇�1(𝑡) = −3𝑥1 + 𝑥2 

�̇�2(𝑡) = −2𝑥2 + 100 𝑒(𝑡) = −2𝑥2 + 100 (𝑟(𝑡) − 2𝑥1 − 𝑥2)

= 100𝑟(𝑡) − 200𝑥1 − 102𝑥2 

[
�̇�1

�̇�2
] = [

−3 1
−200 −102

] [
𝑥1

𝑥2
] + [

0
100

]  𝑟(𝑡) 

𝑐(𝑡) =  [2 1] [
𝑥1

𝑥2
] + [0] 𝑟(𝑡) 

Example (19): 

Consider the control system shown below, using DIRECT decomposition, find the 

dynamic equation for the closed loop system. 

 

𝐶(𝑠)

𝑅(𝑠)
=

100(𝑆 + 5)

(𝑆 + 2)(𝑆 + 3)(𝑆 + 4) + 100(𝑆 + 5)
 

𝐶(𝑠)

𝑅(𝑠)
= 100

(𝑆 + 5)

𝑆3 + 9𝑆2 + 126𝑆 + 524
 

Step #1 

All the power of S must be negative; this can be achieved by dividing by S3 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−2 + 5𝑆−3

1 + 9𝑆−1 + 126𝑆−2 + 524𝑆−3
 

Step #2 

Multiply both the numerator and denominator by dummy variable X(S) 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−2 + 5𝑆−3

1 + 9𝑆−1 + 126𝑆−2 + 524𝑆−3
×

𝑋(𝑆)

𝑋(𝑆)
 

Step #3      Equating numerators 

𝐶(𝑆) = (𝑆−2 + 5𝑆−3) 𝑋(𝑆) 

𝐶(𝑆) = 𝑆−2𝑋(𝑆) + 5𝑆−3𝑋(𝑆)        (1) 

Step #4      Equating denominators 

𝑅(𝑆) = (1 + 9𝑆−1 + 126𝑆−2 + 524𝑆−3) 𝑋(𝑆) 
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𝑋(𝑆) = 𝑅(𝑆) − 9𝑆−1𝑋(𝑆) − 126𝑆−2𝑋(𝑆) − 524𝑆−3𝑋(𝑆)     (2) 

Step #5 Convert the block diagram to state diagram as shown below. 

 

 

 

 

 

 

 

Step #6 Rename the state variables (after each integrator) from right to left, and 

remove the integrator S-1 as shown in the state diagram given below. 

 

 

 

 

 

 

 

Step #7 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = 𝑥2 

�̇�2(𝑡) = 𝑥3 

�̇�3(𝑡) = 100𝑟 − 9𝑥3 − 126𝑥2 − 524𝑥1 

𝑐(𝑡) = 5𝑥1 + 𝑥2 

The above equation can be rearranged in matrix form as: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−524 −126 −9
] [

𝑥1

𝑥2
𝑥3

] + [
0
0

100
]  𝑟(𝑡) 

𝑐(𝑡) =  [5 1 0] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

 S-1 X(S) S-2 X(S) S-3 X(S) 
R(S) 

S-1 S-1 S-1 C(S) 
5 

1 

100 

− 9  

− 126 

− 524 

X3 X3 
X2 X1 

R(S) C(S) 
5 

1 

100 

− 9  

− 126 

− 524 

X1 
. . 

. 

X2 
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5. Converting from State Space to a Transfer Function 

Assume a linear control system with an input vector u(t) and described by the state eqn. 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

Taking Laplace transform for both sides, then 

𝑠𝑋(𝑠) − 𝑥(0) = 𝐴𝑋(𝑠) + 𝐵 𝑈(𝑠) 

𝑋(𝑠)[𝑠𝐼 − 𝐴] = 𝑥(0) + 𝐵 𝑈(𝑠) 

In order to obtain the transfer function, the initial values x(0) must be zero, then 

𝑋(𝑠) = [𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠)       (4) 

The output equation is 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

Taking Laplace transform 

𝑌(𝑆) = 𝐶𝑋(𝑆) + 𝐷𝑈(𝑆)                   (5) 

Substituting by the value of X(S) given by (4) into the output equation (5), then 

𝑌(𝑆) = 𝐶{[𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠)} + 𝐷𝑈(𝑆) 

𝑌(𝑆) = {𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷} 𝑈(𝑆) 

𝑇. 𝐹. 𝐺(𝑆) =
𝑌(𝑆)

𝑈(𝑆)
=  𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷     (6) 

Example (19): 

Consider the dynamic equation for the system with output y(t) and input u(t): 

[
�̇�1

�̇�2
] = [

0 1
−2 −3

] [
𝑥1

𝑥2
] + [

0
1
]  𝑢 

𝑦 =  [0 1] [
𝑥1

𝑥2
] + [0] 𝑢 

Determine the system transfer function 

First, we must calculate [𝑠𝐼 − 𝐴]−1 as we did in example (4) 

[𝑠𝐼 − 𝐴]−1 =

[
 
 
 

𝑆 + 3

(𝑆 + 2)(𝑆 + 1)

1

(𝑆 + 2)(𝑆 + 1)
−2

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)]
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𝑌(𝑆)

𝑈(𝑆)
=  𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷 

𝑌(𝑆)

𝑈(𝑆)
=  [0 1]

[
 
 
 

𝑆 + 3

(𝑆 + 2)(𝑆 + 1)

1

(𝑆 + 2)(𝑆 + 1)
−2

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)]
 
 
 

[
0
1
] + [0]  

𝑌(𝑆)

𝑈(𝑆)
=  [

−2

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)
] [

0
1
] =

𝑆

(𝑆 + 2)(𝑆 + 1)
 

Use Matlab code to convert the 4 matrices to the required T.F.: 

 A = [0 1; -2 -3]; 

 B = [0; 1]; 

 C = [0 1]; 

 D = [0]; 

SYS = ss(A B C D); 

 T = tf(SYS) 

Example (20): 

Consider the dynamic equation for the system with output y(t) and input u(t) shown 

below: 

The state equation: 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 −4 3

−1 −5 −5
] [

𝑥1

𝑥2
𝑥3

] + [
0 0
1 0
0 1

] [
𝑟1(𝑡)
𝑟2(𝑡)

] 

The output equation: 

[
𝑐1(𝑡)
𝑐2(𝑡)

] =  [
1 0 0
0 0 1

] [
𝑥1

𝑥2
𝑥3

] + [
0 0
0 0

] [
𝑟1(𝑡)
𝑟2(𝑡)

] 

Calculate the transfer matrix. 

𝑆𝐼 − 𝐴 = [
𝑆 0 0
0 𝑆 0
0 0 𝑆

] − [
0 1 0
0 −4 3

−1 −5 −5
] = [

𝑆 −1 0
0 𝑆 + 4 −3
1 5 𝑆 + 5

] 

𝑎𝑑𝑗(𝑆𝐼 − 𝐴) = + [

(𝑆 + 4)(𝑆 + 5) + 15 −3 −(𝑆 + 4)
− − (𝑆 + 5) 𝑆(𝑆 + 5) −(5𝑆 + 1)

3 − − 3𝑆 𝑆(𝑆 + 4)
]

𝑇
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∆= det(𝑆𝐼 − 𝐴) = 𝑆{(𝑆 + 4)(𝑆 + 5) + 15} + 3 = 𝑆3 + 9𝑆2 + 35𝑆 + 3 

[𝑆𝐼 − 𝐴]−1 =
1

∆
[
𝑆2 + 9𝑆 + 35 𝑆 + 5 3

−3 𝑆(𝑆 + 5) 3𝑆
−(𝑆 + 4) −(5𝑆 + 1) 𝑆(𝑆 + 4)

] 

𝐶(𝑆)

𝑅(𝑆)
=  𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷 

𝐶(𝑆)

𝑅(𝑆)
=

1

∆
[
1 0 0
0 0 1

] [
𝑆2 + 9𝑆 + 35 𝑆 + 5 3

−3 𝑆(𝑆 + 5) 3𝑆
−(𝑆 + 4) −(5𝑆 + 1) 𝑆(𝑆 + 4)

] [
0 0
1 0
0 1

] + 0 

𝐶(𝑆)

𝑅(𝑆)
=

1

∆
[
1 0 0
0 0 1

] [
𝑆 + 5          3

𝑆(𝑆 + 5)      3𝑆
−(5𝑆 + 1) 𝑆(𝑆 + 4)

] 

𝐶(𝑆)

𝑅(𝑆)
=

1

∆
[

𝑆 + 5 3
−(5𝑆 + 1) 𝑆(𝑆 + 4)

] 

This means 

𝐶1(𝑆)

𝑅1(𝑆)
=

𝑆 + 5

𝑆3 + 9𝑆2 + 35𝑆 + 3
 

𝐶1(𝑆)

𝑅2(𝑆)
=

3

𝑆3 + 9𝑆2 + 35𝑆 + 3
 

𝐶2(𝑆)

𝑅1(𝑆)
=

−(5𝑆 + 1)

𝑆3 + 9𝑆2 + 35𝑆 + 3
 

𝐶2(𝑆)

𝑅2(𝑆)
=

𝑆(𝑆 + 4)

𝑆3 + 9𝑆2 + 35𝑆 + 3
 

Matlab Code: 
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Another Matlab code using symbolic : 
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6. Characteristic Equation 

The characteristic equation plays an important role in the study of linear systems. It 

can be defined with respect to the differential equation, the transfer function, or state 

equations. 

6.1 Characteristic Equation from Differential Equation 

In T.F. all initial values must be zero, therefore, if we have certain D.E. 

𝑐(𝑡) + 9�̈�(𝑡) + 24�̇�(𝑡) + 20𝑐(𝑡) = 10�̇�(𝑡) + 10𝑟(𝑡) 

𝑆3𝐶(𝑠) + 9𝑆2𝐶(𝑠) + 24𝑆𝐶(𝑠) + 20𝐶(𝑠) = 10𝑆𝑅(𝑠) + 10𝑅(𝑠) 

𝐶(𝑠){ 𝑆3 + 9𝑆2 + 24𝑆 + 20} = 𝑅(𝑠){10𝑆 + 10} 

Then the characteristic equation is obtained by setting the homogeneous part of the 

above equation to zero. This mean the characteristic equation is: 

𝑆3 + 9𝑆2 + 24𝑆 + 20 =  0 

6.2 Characteristic Equation from Transfer Function 

If the transfer function of a control system is given, the characteristic equation is 

obtained by equating the denominator polynomial of the T.F. to zero. 

Suppose the transfer function of control system is given as: 

𝐶(𝑠)

𝑅(𝑠)
=

10(𝑆 + 1)

(𝑆 + 2)2(𝑆 + 5)
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The T.F. must be in polynomial format as: 

𝐶(𝑠)

𝑅(𝑠)
=

10𝑆 + 10

𝑆3 + 9𝑆2 + 24𝑆 + 20
 

Then, the characteristic equation is: 

𝑆3 + 9𝑆2 + 24𝑆 + 20 =  0 

6.3 Characteristic Equation from State Equation 

The T.F. obtained from the matrices A, B, C, and D as: 

𝑌(𝑆)

𝑈(𝑆)
=  𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷 

𝑌(𝑆)

𝑈(𝑆)
=  

𝐶 𝑎𝑑𝑗 [𝑠𝐼 − 𝐴]𝐵

|𝑠𝐼 − 𝐴|
+ 𝐷 

𝑌(𝑆)

𝑈(𝑆)
=  

𝐶 𝑎𝑑𝑗 [𝑠𝐼 − 𝐴]𝐵 + 𝐷|𝑠𝐼 − 𝐴|

|𝑠𝐼 − 𝐴|
 

As we said before, the characteristic equation is obtained by equating the 

denominator polynomial of  the T.F. to zero, then it can be obtained as: 

|𝑠𝐼 − 𝐴| = 0 

Suppose that the matrix A is: 

𝐴 = [
0 1 0
0 −4 2

−1 −5 −3
] 

𝑠𝐼 − 𝐴 = [
𝑠 0 0
0 𝑠 0
0 0 𝑠

] − [
0 1 0
0 −4 2

−1 −5 −3
] = [

𝑠 −1 0
0 𝑠 + 4 −2
1 5 𝑠 + 3

] 

the characteristic equation is: 

|𝑠𝐼 − 𝐴| = 𝑠{(𝑠 + 4)(𝑠 + 3) + 10} + 2 = 𝑠3 + 7𝑠2 + 22𝑠 + 2 = 0 

7. Eigen Values 

The eigen values λ1, λ2, λ3, …, λn of n×n matrix A are the roots of the characteristic 

equation. The eigen values are sometimes called the dynamic roots. Sure, these eigen 

values determine the behavior of the control system with time and hence its stability. 
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Example: 

Consider the matrix A, 

𝐴 = [
0 1 0
0 0 1

−6 −11 −6
] 

Find the eigen values? 

First, we calculate (sI-A) 

𝑠𝐼 − 𝐴 = [
𝑠 0 0
0 𝑠 0
0 0 𝑠

] − [
0 1 0
0 0 1

−6 −11 −6
] = [

𝑠 −1 0
0 𝑠 −1
6 11 𝑠 + 6

] 

Replace each S by λ 

𝜆𝐼 − 𝐴 = [
𝜆 −1 0
0 𝜆 −1
6 11 𝜆 + 6

] 

|𝜆𝐼 − 𝐴| = 𝜆3 + 6𝜆2 + 11𝜆 + 6 =  0 

Solving this cubic equation for λ, we get the three eigen values as: 

(𝜆 + 1)(𝜆 + 2)(𝜆 + 3)  =  0 

The eigen values of matrix A are 

λ1= ˗1, λ2= ˗2 and λ3= ˗3 

8. Eigen Vectors 

For each matrix A with n×n dimension, there are n eigen values as explained in 

previous section. For each eigen value there is a corresponding eigen vector. 

Therefore, for matrix A, there are n eigen vectors that can be obtained from Eqn. (1): 

|𝜆𝑖𝐼 − 𝐴||𝑃𝑖| = [0]            (1) 

Where, Pi is the eigen vector corresponding to the eigen value λi 

Therefore, at i =1,2,3,…n we can get P1, P2 P3, …Pn from the above equation. 

Example: 

Calculate the eigen vector for the matrix A given below. 

𝐴 = [
0 1 0
0 0 1

−6 −11 −6
] 
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First, we calculate the eigen values (see previous example): 

λ1= ˗1, λ2= ˗2 and λ3= ˗3 

Based on Eqn. (1) 

[

𝜆1 −1 0
0 𝜆1 −1
6 11 𝜆1 + 6

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 

Substitute λ1= ˗1, 

[
−1 −1 0
0 −1 −1
6 11 5

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 

−𝑃11 − 𝑃21 = 0 

−𝑃21 − 𝑃31 = 0 

6𝑃11 + 11𝑃21 + 5𝑃31 = 0 

Assuming P11=1, and solving the above 3 equations, we get the values of P21 = -1and 

P31 = 1. Therefore, the 1st eigen vector P1 is: 

𝑃1 = [
𝑃11

𝑃21

𝑃31

] = [
1

−1
1

] 

By the same way, at λ2= ˗2, 

[
−2 −1 0
0 −2 −1
6 11 4

] [
𝑃12

𝑃22

𝑃32

] = [
0
0
0
] 

−2𝑃12 − 𝑃22 = 0 

−2𝑃22 − 𝑃32 = 0 

6𝑃12 + 11𝑃22 + 4𝑃32 = 0 

Assuming P12=1, and solving the above 3 equations, we get the values of P22 = -2and 

P32 = 4. Therefore, the 2nd eigen vector P2 is: 

𝑃2 = [
𝑃12

𝑃22

𝑃32

] = [
1

−2
4

] 

By the same way, at λ2= ˗3, 
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[
−3 −1 0
0 −3 −1
6 11 3

] [

𝑃13

𝑃23

𝑃33

] = [
0
0
0
] 

−3𝑃13 − 𝑃23 = 0 

−3𝑃23 − 𝑃33 = 0 

6𝑃13 + 11𝑃23 + 3𝑃33 = 0 

Assuming P13=1, and solving the above 3 equations, we get the values of P23 = -3and 

P33 = 9. Therefore, the 3rd eigen vector P3 is: 

𝑃3 = [

𝑃13

𝑃23

𝑃33

] = [
1

−3
9

] 

9. Linear Transformations 

In previous section, the control system can be represented by different set of matrices 

(A, B, C and D) depending on the decomposition method (Direct, Cascade or 

Parallel).  Although the state space representations are different, similar systems have 

the same transfer function and hence the same poles and eigenvalues. 

We can make transformations between similar systems from one set of state 

equations to another without using the transfer function and state diagrams. This can 

achieve using the transformation matrix P. 

Introducing a new state variables vector z(t) with dimension n×1 and is given as: 

𝑧(𝑡) = [

𝑧1

𝑧2

⋮
𝑧𝑛

] 

The relation between the old state vector x(t) and the new one z(t) is governed by: 

𝑥(𝑡) = 𝑃𝑧(𝑡)    𝑂𝑅     𝑧(𝑡) = 𝑃−1𝑥(𝑡) 

Where P is the eigen vector matrix with dimension n×n 

Therefore, the system can be represented using the new state vector z(t) as follows: 

�̇�(𝑡) = 𝑃−1𝐴 𝑃 𝑧(𝑡) + 𝑃−1𝐵 𝑢(𝑡) 

𝑦(𝑡) = 𝐶 𝑃 𝑧(𝑡) + 𝐷 𝑢(𝑡) 
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9.1 Convert matrix A to diagonal matrix (Diagonalization) 

Sometimes it is useful to convert matrix A to a diagonal matrix by using other set of 

state variables representing the control system. This may make the solution of the 

state equation easier. 

Case #1: matrix A is a phase variable canonical form with distinct eigen values.  

Consider matrix A as: 

𝐴 = [

0 1 0 ⋯⋯ 0
0
⋮

0
⋮

1
⋮

⋯⋯ 0
⋯⋯ ⋯

−𝑎𝑛 −𝑎𝑛−1 −𝑎𝑛−2 ⋯ −𝑎1

] 

The transformation matrix P is Vandermonde matrix and formed as follows: 

𝑃 =

[
 
 
 
 

1 1 1 ⋯⋯ 1
𝜆1

𝜆1
2

⋮

𝜆2

𝜆2
2

⋮

𝜆3

𝜆3
2

⋮

⋯⋯ 𝜆𝑛

⋯
⋯⋯

𝜆𝑛
2

⋯
𝜆1

𝑛−1 𝜆2
𝑛−1

𝜆3
𝑛−1

⋯ 𝜆𝑛
𝑛−1]

 
 
 
 

 

Example 

Given the system described by the dynamic equation 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 0
0 0 1

−6 −11 −6
] [

𝑥1

𝑥2
𝑥3

] + [
0
0
2
]  𝑢(𝑡) 

𝑦(𝑡) =  [1 −2 1] [
𝑥1

𝑥2
𝑥3

] + [0] 𝑢(𝑡) 

Find the diagonal system that is similar. 

First, we calculate the system eigen values as given in the previous example: 

λ1= −1, λ2= −2 and λ3= −3 

Since matrix A is phase variable canonical form with distinct eigen values, then: 

Second, we calculate the Vandermonde matrix (P) with dimension 3×3 such that 

𝑃 = [

1 1 1
𝜆1 𝜆2 𝜆3

𝜆1
2 𝜆2

2 𝜆3
2
] = [

1 1 1
−1 −2 −3
1 4 9

] 

Third, we calculate P-1 as follows, 
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𝑃−1 = [
3 2.5 0.5

−3 −4 −1
1 1.5 0.5

] 

The matrix A of the diagonal system is given by: 

�̅� = 𝑃−1𝐴𝑃 = [
3 2.5 0.5

−3 −4 −1
1 1.5 0.5

] [
0 1 0
0 0 1

−6 −11 −6
] [

1 1 1
−1 −2 −3
1 4 9

] = [
−1 0 0
0 −2 0
0 0 −3

] 

�̅� = 𝑃−1𝐵 = [
3 2.5 0.5

−3 −4 −1
1 1.5 0.5

] [
0
0
2
] = [

1
−2
1

] 

𝐶̅ = 𝐶 𝑃 =  [1 −2 1] [
1 1 1

−1 −2 −3
1 4 9

] = [4 9 16] 

[

�̇�1

�̇�2

�̇�3

] = [
−1 0 0
0 −2 0
0 0 −3

] [
𝑧1

𝑧2
𝑧3

] + [
1

−2
1

]  𝑢(𝑡) 

𝑦(𝑡) =  [4 9 16] [
𝑧1

𝑧2
𝑧3

] + [0] 𝑢(𝑡) 

Case #2: matrix A is NOT a phase variable canonical form with distinct eigen values. 

In that case, the transformation matrix (P) doesn’t follow Vandermonde matrix. 

Matrix P can be obtained as the eigen vectors given in section 8. 

Example: 

Given the system described by the state equation 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 −1
2 8 0

−6 −11 5
] [

𝑥1

𝑥2
𝑥3

] + [
0
1
2
]  𝑢(𝑡) 

Find the diagonal system that is similar. 

First: we determine the eigen values: 

𝜆𝐼 − 𝐴 = [
𝜆 0 0
0 𝜆 0
0 0 𝜆

] − [
0 1 −1
2 8 0

−6 −11 5
] = [

𝜆 −1 1
−2 𝜆 − 8 0
6 11 𝜆 − 5

] 

|𝜆𝐼 − 𝐴| = 𝜆3 − 13𝜆2 + 32𝜆 + 36 =  0 

Solving this cubic equation for λ, we get the three eigen values as: 
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(𝜆 + 0.82843)(𝜆 − 9)(𝜆 − 4.82843)  =  0 

The eigen values of matrix A are 

λ1= −0.82843, λ2= 9 and λ3= 4.82843 

this means, the eigen values are distinct. The eigen vectors are calculated as follows: 

[
𝜆 −1 1

−2 𝜆 − 8 0
6 11 𝜆 − 5

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 

Substitute λ1= −0.82843, 

[
−0.82843 −1 1

−2 −8.82843 0
6 11 −5.82843

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 

−0.82843𝑃11 − 𝑃21 + 𝑃31 = 0 

−2𝑃11 − 8.82843𝑃21 = 0 

6𝑃11 + 11𝑃21 − 5.82843𝑃31 = 0 

Assuming P11=1, and solving the above 3 equations, we get the values of P21 = 

−0.22654 and P31 = 0.60189. Therefore, the 1st eigen vector P1 is: 

𝑃1 = [
𝑃11

𝑃21

𝑃31

] = [
1

−0.22654
0.60189

] 

Substitute λ2= 9, 

[
9 −1 1

−2 1 0
6 11 4

] [
𝑃12

𝑃22

𝑃32

] = [
0
0
0
] 

9𝑃12 − 𝑃22 + 𝑃32 = 0 

−2𝑃12 + 𝑃22 = 0 

6𝑃12 + 11𝑃22 + 4𝑃32 = 0 

Assuming P12=1, and solving the above 3 equations, we get the values of P22= 2 and 

P32 = -7. Therefore, the 2nd eigen vector P2 is: 

𝑃2 = [
𝑃11

𝑃21

𝑃31

] = [
1
2

−7
] 
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Substitute λ3= 4.82843, 

[
4.82843 −1 1

−2 −3.17157 0
6 11 −0.17157

] [

𝑃13

𝑃23

𝑃33

] = [
0
0
0
] 

4.82843𝑃13 − 𝑃23 + 𝑃33 = 0 

−2𝑃13 − 3.17157𝑃23 = 0 

6𝑃13 + 11𝑃23 − 0.17157𝑃33 = 0 

Assuming P13=1, and solving the above 3 equations, we get the values of P23= -

0.630603 and P33 = -5.4591572. Therefore, the 3rd eigen vector P3 is: 

𝑃3 = [

𝑃13

𝑃23

𝑃33

] = [
1

−0.630603
−5.4591572

] 

The transformation matrix P is: 

𝑃 = [
1 1 1

−0.22654 2 −0.630603
0.60189 −7 −5.4591572

] 

We get the inverse of matrix P: 

𝑃−1 = [
0.9255 0.0930 0.1588
0.0976 0.3659 −0.0244

−0.0231 −0.4589 −0.1344
] 

�̅� = 𝑃−1𝐴𝑃 = [
−0.82843 0 0

0 9 0
0 0 4.82843

] 

Case #3: matrix A is NOT a phase variable canonical form with repeated eigen values. 

Since there are repeated eigen values, we can’t put matrix A in diagonal form. But we 

can put matrix A in Jordan Canonical form (J). 

Two examples of matrix (J) for a 5th order control system when eigen values repeated 

twice and when eigen values repeated triple are given as follows: 

𝐽 =

[
 
 
 
 
𝜆1 1 0
0 𝜆1 0
0 0 𝜆2

0 0
0 0
0 0

0 0 0
0 0 0

𝜆3 0
0 𝜆4]

 
 
 
 

                       𝐽 =

[
 
 
 
 
𝜆1 1 0
0 𝜆1 1
0 0 𝜆1

0 0
0 0
0 0

0 0 0
0 0 0

𝜆2 0
0 𝜆3]
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The eigen vectors for non-repeated eigen values are calculated from 

|𝜆𝑖𝐼 − 𝐴||𝑃𝑖| = [0] 

The eigen vectors for m-times repeated eigen values are calculated from 

|𝜆𝑗𝐼 − 𝐴||𝑃𝑚| = −[𝑃𝑚−1] 

Example: 

Given the system described by the state equation 

[

�̇�1

�̇�2

�̇�3

] = [
0 6 −5
1 0 2
3 2 4

] [
𝑥1

𝑥2
𝑥3

] 

Find the transformation matrix (P) that can diagonalize the matrix A or put it in 

Jordan Canonical form. 

First: we determine the eigen values: 

𝜆𝐼 − 𝐴 = [
𝜆 0 0
0 𝜆 0
0 0 𝜆

] − [
0 6 −5
1 0 2
3 2 4

] = [
𝜆 −6 5

−1 𝜆 −2
−3 −2 𝜆 − 4

] 

|𝜆𝐼 − 𝐴| = 𝜆3 − 4𝜆2 + 5𝜆 − 2 =  0 

Solving this cubic equation for λ, we get the three eigen values as: 

(𝜆 − 2)(𝜆 − 1)2  =  0 

The eigen values of matrix A are 

λ1= 2, λ2= 1 and λ3= 1 

this means the eigen values are not distinct. There are repeated eigen values. So, we 

will put matrix A in Jordan canonical form. 

For the non-repeated eigen value (λ1= 2), we calculate the eigen vector P1 as: 

[
𝜆 −6 5

−1 𝜆 −2
−3 −2 𝜆 − 4

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 

Substitute λ1= 2, 

[
2 −6 5

−1 2 −2
−3 −2 −2

] [
𝑃11

𝑃21

𝑃31

] = [
0
0
0
] 
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2𝑃11 − 6𝑃21 + 5𝑃31 = 0 

−𝑃11 + 2𝑃21 − 2𝑃31 = 0 

−3𝑃11 − 2𝑃21 − 2𝑃31 = 0 

Assuming P11=1, and solving the above 3 equations, we get the values of P21 = -0.5 

and P31 = -1. Therefore, the 1st eigen vector P1 is: 

𝑃1 = [
𝑃11

𝑃21

𝑃31

] = [
1

−0.5
−1

] 

For the repeated eigen value (λ2= 1, λ3= 1), we calculate the eigen vector P2 & P3 as: 

[
𝜆 −6 5

−1 𝜆 −2
−3 −2 𝜆 − 4

] [
𝑃12

𝑃22

𝑃32

] = [
0
0
0
] 

Substitute λ2= 1, 

[
1 −6 5

−1 1 −2
−3 −2 −3

] [
𝑃12

𝑃22

𝑃32

] = [
0
0
0
] 

𝑃12 − 6𝑃22 + 5𝑃32 = 0 

−𝑃12 + 𝑃22 − 2𝑃32 = 0 

−3𝑃12 − 2𝑃22 − 3𝑃32 = 0 

Assuming P12=1, and solving the above 3 equations, we get the values of P22 = -3/7 

and P32 = -5/7. Therefore, the 2nd eigen vector P2 is: 

𝑃2 = [
𝑃12

𝑃22

𝑃32

] = [

1
−3/7
−5/7

] 

To get the 3rd eigen vector P3, we use the following relation: 

[
𝜆 −6 5

−1 𝜆 −2
−3 −2 𝜆 − 4

] [

𝑃13

𝑃23

𝑃33

] = [
−𝑃12

−𝑃22

−𝑃32

] 

Substitute λ2= 1, 

[
1 −6 5

−1 1 −2
−3 −2 −3

] [

𝑃13

𝑃23

𝑃33

] = [

−1
3/7
5/7

] 
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𝑃13 − 6𝑃23 + 5𝑃33 = −1 

−𝑃13 + 𝑃23 − 2𝑃33 = 3/7 

−3𝑃13 − 2𝑃23 − 3𝑃33 = 5/7 

Assuming P13=1, and solving the above 3 equations, we get the values of P23 = -22/49 

and P33 = -46/49. Therefore, the 2nd eigen vector P2 is: 

𝑃3 = [

𝑃13

𝑃23

𝑃33

] = [

1
−22/49
−46/49

] 

The transformation matrix (P) is: 

𝑃 = [

1 1 1
−0.5 −3/7 −22/49
−1 −5/7 −46/49

] 

We calculate the inverse of matrix P: 

𝑃−1 = [
−8 −22 2
2 −6 5
7 28 −7

] 

�̅� = 𝐽 = 𝑃−1𝐴𝑃 = [
2 0 0
0 1 1
0 0 1

] 

9.2 Convert matrix A to Phase Variable Canonical Form 

The form of matrix A & B are called phase variable canonical form if it follows the form 

given below. 

 

Is it possible to transform a system to the phase variable canonical form? To answer this 

question, we must form the matrix S and check if it is singular or not.  

𝑆 = [𝐵 𝐴𝐵 𝐴2𝐵 … 𝐴𝑛−1𝐵] 

If the matrix S is non-singular (i.e., its determinate ≠0), then it is possible to form the 

transformation matrix Q that is used to convert matrix A to phase variable canonical form. 
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𝑄 =

[
 
 
 
 

𝑄1

𝑄1𝐴

𝑄1𝐴
2

⋮
𝑄1𝐴

𝑛−1]
 
 
 
 

 

where 

𝑄1 = [0 0 0 ⋯ 1][𝑆]−1 

Introducing a new state variables vector y(t) with dimension n×1 and is given as: 

𝑦(𝑡) = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 

The relation between the old state vector x(t) and the new one y(t) is governed by: 

𝑦(𝑡) = 𝑄𝑥(𝑡)       𝑂𝑅      𝑥(𝑡) = 𝑄−1𝑦(𝑡) 

Where Q is the transformation matrix with dimension n×n 

Therefore, the system can be represented using the new state vector y(t) as follows: 

State equation: 

�̇�(𝑡) = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡) 

𝑄−1�̇�(𝑡) = 𝐴 𝑄−1𝑦(𝑡) + 𝐵 𝑢(𝑡) 

�̇�(𝑡) = 𝑄 𝐴 𝑄−1 𝑦(𝑡) + 𝑄𝐵 𝑢(𝑡) 

�̇�(𝑡) = �̅� 𝑦(𝑡) + �̅� 𝑢(𝑡) 

Where matrix �̅� and matrix �̅� are in phase variable canonical form. 

Output equation: 

𝑐(𝑡) = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡) 

𝑐(𝑡) = 𝐶 𝑄−1 𝑦(𝑡) + 𝐷 𝑢(𝑡) 

Example: 

Given the system described by the state equation 

[

�̇�1

�̇�2

�̇�3

] = [
0 1 −1
2 8 0

−6 −11 5
] [

𝑥1

𝑥2
𝑥3

] + [
0
1
2
]  𝑢(𝑡) 
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Find the phase variable canonical form system that is similar. 

First, we must form the matrix S and check if it is singular or not: 

𝑆 = [𝐵 𝐴𝐵 𝐴2𝐵] 

𝐴𝐵 = [
0 1 −1
2 8 0

−6 −11 5
] [

0
1
2
] = [

−1
8

−1
] 

𝐴2𝐵 = [
0 1 −1
2 8 0

−6 −11 5
] [

0 1 −1
2 8 0

−6 −11 5
] [

0
1
2
] = [

8 19 −5
16 66 −2

−52 −149 31
] [

0
1
2
] = [

9
62

−87
] 

𝑆 = [
0 −1 9
1 8 62
2 −1 −87

] 

The determinate of matrix S = −364 ≠ 0, therefore, matrix S is nonsingular 

Second, we calculate the matrix Q1 as 

𝑄1 = [0 0 0 ⋯ 1][𝑆]−1 

[𝑆]−1 = [
1.7418 0.2637 0.3681

−0.5797 0.0495 −0.0247
0.0467 0.0055 −0.0027

] 

𝑄1 = [0 0 1] [
1.7418 0.2637 0.3681

−0.5797 0.0495 −0.0247
0.0467 0.0055 −0.0027

] = [0.0467 0.0055 −0.0027] 

Third, we form the transformation matrix Q as: 

𝑄 =

[
 
 
 
 

𝑄1

𝑄1𝐴

𝑄1𝐴
2

⋮
𝑄1𝐴

𝑛−1]
 
 
 
 

 

𝑄1𝐴 = [0.0467 0.0055 −0.0027] [
0 1 −1
2 8 0

−6 −11 5
] = [0.0275 0.1209 −0.0604] 

𝑄1𝐴
2 = [0.6044 1.6593 −0.3297] 

𝑄 = [
0.0467 0.0055 −0.0027
0.0275 0.1209 −0.0604
0.6044 1.6593 −0.3297

] 

Fourth, calculate Q-1 as: 
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𝑄−1 = [
22 −1 0

−10 −5 1
10 −27 2

] 

The phase variable canonical form with matrix  

�̅� = 𝑄 𝐴 𝑄−1 = [
0 1 0
0 0 1

−36 −32 13
] 

�̅� = 𝑄𝐵 = [
0
0
1
] 

10. Time Domain Solution of State Equations 

Assume a linear control system with an input vector u(t) and described by the state 

equation: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

In the above state equation, in case of zero input, the equation will be: 

�̇�(𝑡) = 𝐴𝑥(𝑡) 

The is a homogeneous equation represents an unforced system or free response (i.e. 

without input). The solution of that equation is 

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) 

We can replace the exponential function with its convergent series equivalent as: 

𝑥(𝑡) = {𝐼 + 𝐴𝑡 +
1

2!
𝐴2𝑡2 +

1

3!
𝐴3𝑡3 + ⋯+

1

𝑛!
𝐴𝑛𝑡𝑛} 𝑥(0) 

Please note that each element inside bracket is an n×n matrix. 

It is clear from the above solution that the state variables changed from x(0) at t=0 to 

x(t) at time t by multiplying it by the exponential function eAt. Therefore, this 

exponential function is called (state transition matrix) and has a symbol Φ(t). 

Now if the input is existing, the state equation will be 

�̇�(𝑡) − 𝐴𝑥(𝑡) = 𝐵𝑢(𝑡) 

Multiplying both sides by an exponential function e-At 

𝑒−𝐴𝑡{�̇�(𝑡) − 𝐴𝑥(𝑡)} = 𝑒−𝐴𝑡{𝐵𝑢(𝑡)} 
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The left-hand term can be expressed as: 

𝑒−𝐴𝑡{�̇�(𝑡) − 𝐴𝑥(𝑡)} =
𝑑

𝑑𝑡
{𝑒−𝐴𝑡𝑥(𝑡)} 

𝑑

𝑑𝑡
{𝑒−𝐴𝑡𝑥(𝑡)} = 𝑒−𝐴𝑡{𝐵𝑢(𝑡)} 

Integrating both sides in the interval from 0 to t 

𝑒−𝐴𝑡𝑥(𝑡)|0
𝑡 = ∫ 𝑒−𝐴𝜏{𝐵𝑢(𝜏)}. 𝑑𝜏

𝑡

0

 

𝑒−𝐴𝑡𝑥(𝑡) − 𝑥(0) = ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏). 𝑑𝜏
𝑡

0

 

𝑥(𝑡) = 𝑒𝐴𝑡𝑥(0) + ∫ 𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏). 𝑑𝑡
𝑡

0

 

The above solution represents the total solution which includes two terms: the first 

term represents the homogeneous solution (unforced response) and the second term 

represents the forced response. 

We can handle the solution of state equation from Laplace point of view by taking 

Laplace transform for both sides of the state equation, then: 

𝑠𝑋(𝑠) − 𝑥(0) = 𝐴𝑋(𝑠) + 𝐵 𝑈(𝑠) 

[𝑠𝐼 − 𝐴]𝑋(𝑠) = 𝑥(0) + 𝐵 𝑈(𝑠) 

𝑋(𝑠) = [𝑠𝐼 − 𝐴]−1𝑥(0) + [𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠) 

By comparing the obtained solution here with that obtained previously, we find the 

state transition matrix Φ(S) = [𝑠𝐼 − 𝐴]−1 and Φ(𝑡) = ∫ [𝑠𝐼 − 𝐴]−1−1
 

Some properties of the state transition matrix Φ(t) 

1) Φ(𝑡) = 𝑒𝐴𝑡 = ∫ [𝑠𝐼 − 𝐴]−1
−1

 

2) Φ(0) = 𝐼 

3) Φ−1(𝑡) = Φ(−𝑡) 

4) Φ(𝑡1 + 𝑡2) = Φ(𝑡1) × Φ(𝑡2) = Φ(𝑡2) × Φ(𝑡1) 

5) if matrix A is a diagonal matrix with distinct eigen values, then Φ(t) is obtained as: 
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Φ(𝑡) = [
𝑒𝜆1𝑡 0 0
0 𝑒𝜆2𝑡 0
0 0 𝑒𝜆3𝑡

] 

To get x(t), this is done simply by taking inverse Laplace transform for both sides: 

𝑥(𝑡) =  𝐿−1{[𝑠𝐼 − 𝐴]−1{𝑥(0) + 𝐵 𝑈(𝑠)}}  

Then 

𝑥(𝑡) =  𝐿−1{φ(S) } 𝑥(0) + 𝐿−1{φ(S) 𝐵 𝑈(𝑠)}      (1) 

Above equation is called the state transition equation and the term 𝐿−1{[𝑠𝐼 − 𝐴]−1} is 

called the state transition matrix φ(t) 

𝜑(𝑡) =  𝐿−1{[𝑠𝐼 − 𝐴]−1} 

The first term on the right-hand side of the eqn. (1) is the response due to the initial 

state vector, x(0) and called zero-input response, since it is the total response if the 

input is zero. The second term, called the convolution integral, is dependent only on 

the input, u, and the input matrix, B, and is called the zero-state response, since it is 

the total response if the initial state vector is zero.  

Example (20): 

Evaluation of the state transition matrix 

Consider 𝐴 = [
0 −2
1 −3

]. Determine Φ(𝑠) = [𝑠𝐼 − 𝐴]−1. 

[𝑠𝐼 − 𝐴] = 𝑆 [
1 0
0 1

] − [
0 −2
1 −3

] = [
𝑠 2

−1 (𝑠 + 3)
] 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 =
1

∆(𝑠)
[
(𝑠 + 3) −2

1 𝑠
] 

∆(𝑠) = det(𝑠𝐼 − 𝐴) = 𝑠(𝑠 + 3) + 2 = 𝑆2 + 3𝑆 + 2 = (𝑆 + 2)(𝑆 + 1) 

Φ(𝑠) =

[
 
 
 

𝑆 + 3

(𝑆 + 2)(𝑆 + 1)

−2

(𝑆 + 2)(𝑆 + 1)
1

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)]
 
 
 

 

To get the state transition matrix φ(t), we use partial fraction of each term in φ(S) 
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Φ(𝑠) =

[
 
 
 

−1

(𝑆 + 2)
+

2

(𝑆 + 1)

2

(𝑆 + 2)
+

−2

(𝑆 + 1)
−1

(𝑆 + 2)
+

1

(𝑆 + 1)

2

(𝑆 + 2)
+

−1

(𝑆 + 1)]
 
 
 

 

𝜑(𝑡) =  [−𝑒−2𝑡 + 2𝑒−𝑡 2𝑒−2𝑡 − 2𝑒−𝑡

−𝑒−2𝑡 + 𝑒−𝑡 2𝑒−2𝑡 − 𝑒−𝑡 ] 

Example (21): 

Consider the state equation shown below. 

[
�̇�1

�̇�2
] = [

0 1
−2 −3

] [
𝑥1

𝑥2
] + [

0
1
]  𝑢 

𝑦 = [1 3] [
𝑥1

𝑥2
] 

Determine the state transition equation x(t) for a unit step input and x1(0)=1, x2(0)=2 

[𝑠𝐼 − 𝐴] = [
𝑠 0
0 𝑠

] − [
0 1

−2 −3
] = [

𝑠 −1
2 𝑠 + 3

] 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 =
1

∆(𝑠)
[
𝑠 + 3 1
−2 𝑠

] 

∆(𝑠) = det(𝑠𝐼 − 𝐴) = 𝑠(𝑠 + 3) + 2 = 𝑆2 + 3𝑆 + 2 = (𝑆 + 2)(𝑆 + 1) 

Φ(𝑠) =

[
 
 
 

𝑆 + 3

(𝑆 + 2)(𝑆 + 1)

1

(𝑆 + 2)(𝑆 + 1)
−2

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)]
 
 
 

 

To get the state transition matrix φ(t), we use partial fraction of each term in φ(S) 

Φ(𝑠) =

[
 
 
 

−1

(𝑆 + 2)
+

2

(𝑆 + 1)

−1

(𝑆 + 2)
+

1

(𝑆 + 1)
2

(𝑆 + 2)
−

2

(𝑆 + 1)

2

(𝑆 + 2)
+

−1

(𝑆 + 1)]
 
 
 

 

𝜑(𝑡) =  [−𝑒−2𝑡 + 2𝑒−𝑡 −𝑒−2𝑡 + 𝑒−𝑡

2𝑒−2𝑡 − 2𝑒−𝑡 2𝑒−2𝑡 − 𝑒−𝑡 ] 

φ(S)𝐵 𝑈(𝑠) =

[
 
 
 

𝑆 + 3

(𝑆 + 2)(𝑆 + 1)

1

(𝑆 + 2)(𝑆 + 1)
−2

(𝑆 + 2)(𝑆 + 1)

𝑆

(𝑆 + 2)(𝑆 + 1)]
 
 
 

[
0
1
] 

1

𝑆
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φ(S)𝐵 𝑈(𝑠) =

[
 
 
 

1

𝑆(𝑆 + 2)(𝑆 + 1)
𝑆

𝑆(𝑆 + 2)(𝑆 + 1)]
 
 
 

= [
0.5 +

0.5

𝑆 + 2
+

−1

𝑆 + 1
−1

𝑆 + 2
+

1

𝑆 + 1

] 

𝐿−1{φ(S) 𝐵 𝑈(𝑠)} = [0.5 + 0.5 𝑒−2𝑡 − 𝑒−𝑡

−𝑒−2𝑡 + 𝑒−𝑡 ] 

 

𝑥(𝑡) =  [−𝑒−2𝑡 + 2𝑒−𝑡 −𝑒−2𝑡 + 𝑒−𝑡

2𝑒−2𝑡 − 2𝑒−𝑡 2𝑒−2𝑡 − 𝑒−𝑡 ] [
1
2
] + [0.5 + 0.5 𝑒−2𝑡 − 𝑒−𝑡

−𝑒−2𝑡 + 𝑒−𝑡 ] 

 

𝑥(𝑡) =  [−3𝑒−2𝑡 + 4𝑒−𝑡

6𝑒−2𝑡 − 4𝑒−𝑡 ] + [0.5 + 0.5 𝑒−2𝑡 − 𝑒−𝑡

−𝑒−2𝑡 + 𝑒−𝑡 ] = [0.5 − 2.5𝑒−2𝑡 + 3𝑒−𝑡

5𝑒−2𝑡 − 3𝑒−𝑡 ] 

On the other hand, we can calculate the output y(t) based on the output equation 

𝑦(𝑡) = [1 3] [
𝑥1(𝑡)

𝑥2(𝑡)
] = [1 3] [0.5 − 2.5𝑒−2𝑡 + 3𝑒−𝑡

5𝑒−2𝑡 − 3𝑒−𝑡 ] = 0.5 + 12.5𝑒−2𝑡 − 6𝑒−𝑡 

Example (22): 

For the control system shown below, Assign the appropriate state variables, then: 

a) Write the system Dynamic equation, 

b) Calculate the system eigen values, 

c) Find the state transition matrix (t), 

d) Assuming unit step input and zero initial values, find an expression for the state 

transition equation x(t), then calculate its value at t = 0.5 sec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1 

x2 

𝑥1̇ 
_ 

7 

R(S) 

+ 

Y(S) 

5 

8 

4 

6 

2 

9 

3 

+ 
+ 

_ 

+ 

+ 

+ 

𝑥2̇ 



Electrical Engineering Department 

Dr. Ahmed Mustafa Hussein 
 

Benha University 

College of Engineering at Shubra 
 

 

56 Chapter Five: State Variable Analysis         Dr. Ahmed Mustafa Hussein          EE3511 
 

Assuming the integrator outputs are the state variables as given below 

�̇�1(𝑡) = 8𝑥1(𝑡) − 6𝑥2(𝑡) + 7𝑟(𝑡) 

�̇�2(𝑡) = {4𝑥1(𝑡) − 2𝑥2(𝑡) + 5𝑟(𝑡)} 

𝑦(𝑡) = {3𝑥1(𝑡) + 9𝑥2(𝑡)} 

These two equations can be arranged in matrix format as follows: 

[
�̇�1

�̇�2
] = [

8 −6
4 −2

] [
𝑥1

𝑥2
] + [

7
5
]  𝑟(𝑡) 

[𝑦(𝑡)] = [3 9] [
𝑥1

𝑥2
] + [0] 𝑟(𝑡) 

b) Eigen values can be determined as: 

[𝐼 − 𝐴] = [
 0
0 

] − [
8 −6
4 −2

] = [
 − 8 6
−4  + 2

] 

∆(𝑠) = det( 𝐼 − 𝐴) = ( − 8)( + 2) + 24 = 2 − 6 + 8 = ( − 2)( − 4) 

1 = 2    𝑎𝑛𝑑  2 = 4 

c) Evaluation of the state transition matrix 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 

[𝑠𝐼 − 𝐴] = 𝑆 [
1 0
0 1

] − [
8 −6
4 −2

] = [
𝑠 − 8 6
−4 (𝑠 + 2)

] 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 =
1

∆(𝑠)
[
(𝑠 + 2) −6

4 𝑠 − 8
] 

∆(𝑠) = det( 𝑆𝐼 − 𝐴) = (𝑆 − 8)(𝑆 + 2) + 24 = 𝑆2 − 6𝑆 + 8 = (𝑆 − 2)(𝑆 − 4) 

Φ(𝑠) =

[
 
 
 

𝑆 + 2

(𝑆 − 2)(𝑆 − 4)

−6

(𝑆 − 2)(𝑆 − 4)
4

(𝑆 − 2)(𝑆 − 4)

𝑆 − 8

(𝑆 − 2)(𝑆 − 4)]
 
 
 

 

Using partial fractions: 

𝑆 + 2

(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆 − 2
+

𝐵

𝑆 − 4
 

𝑆 + 2 = 𝐴(𝑆 − 4) +  𝐵(𝑆 − 2) 

at S = 2:                4 = -2A, then A = -2 

at S = 4:                6 = 2B, then B = 3 

𝑆 − 8

(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆 − 2
+

𝐵

𝑆 − 4
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𝑆 − 8 = 𝐴(𝑆 − 4) +  𝐵(𝑆 − 2) 

at S = 2:                -6 = -2A, then A = 3 

at S = 4:               - 4 = 2B, then B = -2 

4

(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆 − 2
+

𝐵

𝑆 − 4
 

4 = 𝐴(𝑆 − 4) +  𝐵(𝑆 − 2) 

at S = 2:                4 = -2A, then A = -2 

at S = 4:                4 = 2B, then B = 2 

−6

(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆 − 2
+

𝐵

𝑆 − 4
 

−6 = 𝐴(𝑆 − 4) +  𝐵(𝑆 − 2) 

at S = 2:                -6 = -2A, then A = 3 

at S = 4:                -6 = 2B, then B = -3 

Φ(𝑠) =

[
 
 
 

−2

(𝑆 − 2)
+

3

(𝑆 − 4)

3

(𝑆 − 2)
−

3

(𝑆 − 4)
−2

(𝑆 − 2)
+

2

(𝑆 − 4)

3

(𝑆 − 2)
−

2

(𝑆 − 4)]
 
 
 

 

Using Inverse Laplace, 

𝜑(𝑡) =  [−2𝑒2𝑡 + 3𝑒4𝑡 3𝑒2𝑡 − 3𝑒4𝑡

−2𝑒2𝑡 + 2𝑒4𝑡 3𝑒2𝑡 − 2𝑒4𝑡] 

The state transition equation is given by: 

𝑥(𝑡) =  𝜑(𝑡) 𝑥(0) + 𝐿−1{Φ(𝑠) 𝐵 𝑅(𝑠)} 

Since the initial values of the state variables are assumed to be zero, therefore, no 

need to calculate the first term 𝜑(𝑡) 𝑥(0). 

The second term 

Φ(𝑠) 𝐵 𝑅(𝑠) =

[
 
 
 

𝑆 + 2

(𝑆 − 2)(𝑆 − 4)

−6

(𝑆 − 2)(𝑆 − 4)
4

(𝑆 − 2)(𝑆 − 4)

𝑆 − 8

(𝑆 − 2)(𝑆 − 4)]
 
 
 

× [
7
5
] ×

1

𝑆
=

[
 
 
 

7𝑆 − 16

𝑆(𝑆 − 2)(𝑆 − 4)
5𝑆 − 12

𝑆(𝑆 − 2)(𝑆 − 4)]
 
 
 

 

Using partial fraction: 

7𝑆 − 16

𝑆(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆
+

𝐵

𝑆 − 2
+

𝐶

𝑆 − 4
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7𝑆 − 16 = 𝐴(𝑆 − 2)(𝑆 − 4) + 𝐵𝑆(𝑆 − 4) + 𝐶𝑆(𝑆 − 2) 

At S=0,      -16 = 8A , then A = -2 

At S=2,       -2 = -4B, then  B = 0.5 

At S=4,        12 = 8C, then  C = 1.5 

5𝑆 − 12

𝑆(𝑆 − 2)(𝑆 − 4)
=

𝐴

𝑆
+

𝐵

𝑆 − 2
+

𝐶

𝑆 − 4
 

5𝑆 − 12 = 𝐴(𝑆 − 2)(𝑆 − 4) + 𝐵𝑆(𝑆 − 4) + 𝐶𝑆(𝑆 − 2) 

At S=0,      -12 = 8A , then A = -1.5 

At S=2,       -2 = -4B, then  B = 0.5 

At S=4,        8 = 8C, then  C = 1 

𝑋(𝑆) =

[
 
 
 
 

−2

𝑆
+

0.5

𝑆 − 2
+

1.5

(𝑆 − 4)
−1.5

𝑆
+

0.5

𝑆 − 2
+

1

(𝑆 − 4)]
 
 
 
 

 

Using Inverse Laplace, 

𝑥(𝑡) = [−2 + 0.5𝑒2𝑡 + 1.5𝑒4𝑡

−1.5 + 0.5𝑒2𝑡 + 1𝑒4𝑡] 

At t = 0.5 sec, 

𝑥(𝑡) = [
10.4427
7.2482

] 

Example (23): 

Consider the unity-feedback with unit-step-input control system shown below. 

Assuming the appropriate state variables x1(t) and x2(t): 

a) Find the state transition equation x(t), if x1(0) = x2(0) =1. 

b) Calculate the value of x1(t) after 2 ms. 

 

 

 

 

 
 

 

From the given block diagram, the system T.F. is: 
𝑌(𝑠)

𝑅(𝑠)
=

25

𝑆2 + 6𝑆 + 25
 

1

𝑆
 

25

(𝑆 + 3)
 

R(S) 

_ 

+ Y(S) 

_ 

3

25
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This means: 

𝑑2𝑦(𝑡)

𝑑𝑡2
+ 6

𝑑𝑦(𝑡)

𝑑𝑡
+ 25𝑦(𝑡) = 25𝑟(𝑡) 

Let x1(t) = y(t)    →   �̇�1(𝑡) =
𝑑𝑦(𝑡)

𝑑𝑡
   →   �̇�1(𝑡) = x2(t) 

Also, x2(t) = 
𝑑𝑦(𝑡)

𝑑𝑡
    →   �̇�2(𝑡) =

𝑑2𝑦(𝑡)

𝑑𝑡2
          →   �̇�2(𝑡) =  25𝑟 − 25𝑥1 − 6𝑥2 

These D.E’s can be arranged in matrix form as: 

[
�̇�1

�̇�2
] = [

0 1
−25 −6

] [
𝑥1

𝑥2
] + [

0
25

]  𝑟(𝑡) 

[𝑦] = [1 0] [
𝑥1

𝑥2
] + [0] 𝑟(𝑡) 

To calculate the state transition equation X(s): 

𝑋(𝑠) = [𝑠𝐼 − 𝐴]−1𝑥(0) + [𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠) 

The first term is: 

[𝑠𝐼 − 𝐴] = [
𝑆 0
0 𝑆

] − [
0 1

−25 −6
] = [

𝑆 −1
25 𝑆 + 6

] 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 =
1

∆(𝑠)
[
𝑆 + 6 1
−25 𝑆

] 

∆(𝑠) = det(𝑠𝐼 − 𝐴) = 𝑆(𝑆 + 6) + 25 = 𝑆2 + 6𝑆 + 25 = (𝑆 + 3)2 + 16 

Φ(𝑠)𝑥(0) =
1

∆
[
𝑆 + 6 1
−25 𝑆

] [
1
1
] =

1

∆
[
𝑆 + 7
𝑆 − 25

] 

The second term of X(s) equation is: 

[𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠) =
1

∆
[
𝑆 + 6 1
−25 𝑆

] [
0
25

]
1

𝑆
=

1

∆
[
25
25𝑆

]
1

𝑆
=

1

∆
[
25

𝑆
25

] 

𝑋(𝑠) =
1

∆
[
𝑆 + 7
𝑆 − 25

] +
1

∆
[
25

𝑆
25

] =
1

∆
[
25

𝑆
25

] =

[
 
 
 

𝑆2 + 7𝑆 + 25

𝑆(𝑆2 + 6𝑆 + 25)
𝑆

𝑆2 + 6𝑆 + 25 ]
 
 
 

 

To get x(t), we must get L-1, therefore we must obtain the partial fractions for the two 

fractions given in X(s) equation: 

𝑆2 + 7𝑆 + 25

𝑆(𝑆2 + 6𝑆 + 25)
=

𝐴

𝑆
+

𝐵𝑆 + 𝐶

𝑆2 + 6𝑆 + 25
 

𝑆2 + 7𝑆 + 25 = 𝐴(𝑆2 + 6𝑆 + 25) + (𝐵𝑆 + 𝐶)𝑆 

𝑆2 + 7𝑆 + 25 = (𝐴 + 𝐵)𝑆2 + (6𝐴 + 𝐶)𝑆 + 25𝐴 
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By equating coefficients: 

25 𝐴 = 25 →     𝐴 = 1        𝑎𝑙𝑠𝑜 𝐴 + 𝐵 = 1 →    𝐵 = 0 

6𝐴 + 𝐶 = 7 →     𝐶 = 1 

𝑆2 + 7𝑆 + 25

𝑆(𝑆2 + 6𝑆 + 25)
=

1

𝑆
+

1

(𝑆 + 3)2 + 16
  

Taking inverse Laplace 

1

𝑆
+

4/4

(𝑆 + 3)2 + 16
= 1 +

1

4
𝑒−3𝑡sin (4𝑡) 

𝑆

𝑆2 + 6𝑆 + 25
=

(𝑆 + 3) − 3

(𝑆 + 3)2 + 16
=

(𝑆 + 3)

(𝑆 + 3)2 + 16
−

3 × 4/4

(𝑆 + 3)2 + 16
 

Taking inverse Laplace 

(𝑆 + 3)

(𝑆 + 3)2 + 16
−

3 ×
4
4

(𝑆 + 3)2 + 16
= 𝑒−3𝑡 cos(4𝑡) −

3

4
𝑒−3𝑡sin (4𝑡) 

𝑥(𝑡) = [
1 +

1

4
𝑒−3𝑡sin (4𝑡)

𝑒−3𝑡 cos(4𝑡) −
3

4
𝑒−3𝑡sin (4𝑡)

] 

b) After 2ms 

𝑥1(𝑡) = 1 +
1

4
𝑒−3×0.002 sin (4 × 0.002 ×

180

𝜋
) = 1 +

1

4
× 0.994 × 0.008 = 1.00199 

Example (24): 

For the MIMO control system represented by the state-space model shown below, 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1 

x3 

𝑥1̇ 

_ 

U1 
_ 

C1 

2 

2 

2 

+ 

+ 

_ 

+ 

+ 

+ 

𝑥3̇ 

X2 𝑥2̇ 

U2 

+ 

C2 

+ 

+ 

+ 
+ 
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a) Write the Dynamic equation in matrix form, 

b) Calculate the system transfer function, 

c) Calculate the system eigen values,                   

d) Calculate the state transition equation X(S) if x(0)=[1  0  0]T and u(t)=[1  2]T, then 

find x2(t). 
From the block diagram given in Figure above, the state equations can be obtained as: 

�̇�1(𝑡) = 2𝑥1(𝑡) − 𝑥2(𝑡) − 𝑢1(𝑡) 

�̇�2(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) + 2𝑥3(𝑡) + 𝑢1(𝑡) 

�̇�3(𝑡) = −𝑥1(𝑡) + 𝑥3(𝑡) + 2𝑢2(𝑡) 

Also, the output equations can be obtained as: 

𝑐1(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) 

𝑐2(𝑡) = 𝑥1(𝑡) + 𝑥3(𝑡) 

The state equation (in matrix form): 

[

�̇�1

�̇�2

�̇�3

] = [
2 −1 0
1 1 2

−1 0 1
] [

𝑥1

𝑥2
𝑥3

] + [
−1 0
1 0
0 2

] [
𝑢1(𝑡)
𝑢2(𝑡)

] 

The output equation (in matrix form): 

[
𝑐1(𝑡)
𝑐2(𝑡)

] =  [
1 1 0
1 0 1

] [
𝑥1

𝑥2
𝑥3

] + [
0 0
0 0

] [
𝑟1(𝑡)
𝑟2(𝑡)

] 

Calculate the transfer matrix. 

𝑆𝐼 − 𝐴 = [
𝑆 0 0
0 𝑆 0
0 0 𝑆

] − [
2 −1 0
1 1 2

−1 0 1
] = [

𝑆 − 2 1 0
−1 𝑆 − 1 −2
1 0 𝑆 − 1

] 

𝑎𝑑𝑗(𝑆𝐼 − 𝐴) = [

𝑆2 − 2𝑆 + 1 −(−𝑆 + 3) −𝑆 + 1

−(𝑆 − 1) 𝑆2 − 3𝑆 + 2 −(−1)

−2 −(−2𝑆 + 4) 𝑆2 − 3𝑆 + 3

]

𝑇

 

∆= det(𝑆𝐼 − 𝐴) = (𝑆 − 2){𝑆2 − 2𝑆 + 1} + 𝑆 − 3 = 𝑆3 − 4𝑆2 + 6𝑆 − 5 

[𝑆𝐼 − 𝐴]−1 =
1

∆
[
𝑆2 − 2𝑆 + 1 −𝑆 + 1 −2

𝑆 − 3 𝑆2 − 3𝑆 + 2 2𝑆 − 4
−𝑆 + 1 1 𝑆2 − 3𝑆 + 3

] 

[𝑠𝐼 − 𝐴]−1𝐵 =
1

∆
[
𝑆2 − 2𝑆 + 1 −𝑆 + 1 −2

𝑆 − 3 𝑆2 − 3𝑆 + 2 2𝑆 − 4
−𝑆 + 1 1 𝑆2 − 3𝑆 + 3

] [
−1 0
1 0
0 2

] =
1

∆
[

−𝑆2 + 𝑆 −4
𝑆2 − 4𝑆 + 5 4𝑆 − 8

              𝑆 2𝑆2 − 6𝑆 + 6

] 
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𝐶(𝑆)

𝑈(𝑆)
=  𝐶 [𝑠𝐼 − 𝐴]−1𝐵 + 𝐷 =

1

∆
[
1 1 0
1 0 1

] [
−𝑆2 + 𝑆 −4

𝑆2 − 4𝑆 + 5 4𝑆 − 8
                     𝑆 2𝑆2 − 6𝑆 + 6

] 

𝐶(𝑆)

𝑈(𝑆)
=

1

∆
[
−3𝑆 + 5 4𝑆 − 12
−𝑆2 + 2𝑆 2𝑆2 − 6𝑆 + 2

] 

This means 
𝐶1(𝑆)

𝑅1(𝑆)
=

−3𝑆 + 5

𝑆3 − 4𝑆2 + 6𝑆 − 5
 

𝐶1(𝑆)

𝑅2(𝑆)
=

4𝑆 − 12

𝑆3 − 4𝑆2 + 6𝑆 − 5
 

𝐶2(𝑆)

𝑅1(𝑆)
=

−𝑆2 + 2𝑆

𝑆3 − 4𝑆2 + 6𝑆 − 5
 

𝐶2(𝑆)

𝑅2(𝑆)
=

2𝑆2 − 6𝑆 + 2

𝑆3 − 4𝑆2 + 6𝑆 − 5
 

Eign values can be obtained from the determine of 𝜆𝐼 − 𝐴, 

𝜆3 − 4𝜆2 + 6𝜆 − 5 = 0 

𝜆1 = 2.3532 

𝜆2 = 0.8234 + 𝐽1.2028 

𝜆3 = 0.8234 − 𝐽1.2028 

The state transition equation is given by: 

𝑋(𝑠) = [𝑠𝐼 − 𝐴]−1𝑥(0) + [𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠) 

[𝑠𝐼 − 𝐴]−1𝑥(0) =
1

∆
[
𝑆2 − 2𝑆 + 1 −𝑆 + 1 −2

𝑆 − 3 𝑆2 − 3𝑆 + 2 2𝑆 − 4
−𝑆 + 1 1 𝑆2 − 3𝑆 + 3

] [
1
0
0
] =

1

∆
[
𝑆2 − 2𝑆 + 1

𝑆 − 3
−𝑆 + 1

] 

[𝑠𝐼 − 𝐴]−1𝐵 𝑈(𝑠) =
1

∆𝑆
[

−𝑆2 + 𝑆 −4

𝑆2 − 4𝑆 + 5 4𝑆 − 8

              𝑆 2𝑆2 − 6𝑆 + 6

] [
1

2
] =

1

∆𝑆
[

−𝑆2 + 𝑆 − 8

𝑆2 + 4𝑆 − 11

4𝑆2 − 11𝑆 + 12

] 

𝑋(𝑠) =
1

∆
[
𝑆2 − 2𝑆 + 1

𝑆 − 3
−𝑆 + 1

] +
1

∆𝑆
[

−𝑆2 + 𝑆 − 8

𝑆2 + 4𝑆 − 11

4𝑆2 − 11𝑆 + 12

] =
1

∆𝑆
[
𝑆3 − 3𝑆2 + 2𝑆 − 8

2𝑆2 + 𝑆 − 11
3𝑆2 − 10𝑆 + 12

] 
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𝑋2(𝑆) =
2𝑆2 + 𝑆 − 11

𝑆(𝑆3 − 4𝑆2 + 6𝑆 − 5)
=  

2𝑆2 + 𝑆 − 11

𝑆(𝑆 − 2.35321)(𝑆2 − 1.6468𝑆 + 2.1248)
 

𝑋2(𝑆) =  
2𝑆2 + 𝑆 − 11

𝑆(𝑆 − 2.3532)(𝑆2 − 1.6468𝑆 + 2.1248)
=

𝐴

𝑆
+

𝐵

𝑆 − 2.3532
+

𝐶𝑆 + 𝐷

𝑆2 − 1.6468𝑆 + 2.1248
 

2𝑆2 + 𝑆 − 11 = 𝐴(𝑆 − 2.3532)(𝑆2 − 1.6468𝑆 + 2.1248) + 𝐵𝑆(𝑆2 − 1.6468𝑆 + 2.1248) + (𝐶𝑆 + 𝐷)𝑆(𝑆 − 2.3532) 

At S=0 

−11 = 𝐴(−2.3532)(2.1248)               𝐴 = 2.2 

At S=2.3532 

2.4283 = 𝐵(2.3532)(3.7871)                  𝐵 = 0.2725 

At S=1 

−8 = 2.2(−1.3532)(1.478) + 0.2725(1)(1.478) + (𝐶 + 𝐷)(1)(−1.3532) 

𝐶 + 𝐷 = 2.95794 

At S= −1 

−10 = 2.2(−3.3532)(4.7716) + 0.2725(−1)(4.7716) + (𝐷 − 𝐶)(−1)(−3.3532) 

𝐷 − 𝐶 = 7.90306 

From the above two equations in C and D;  

D = 5.4305    and C = −2.47256 

𝑋2(𝑆) =  
2.2

𝑆
+

0.2725

𝑆 − 2.3532
+

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
 

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
=

−2.47256(𝑆 − 0.8234 + 0.8234) + 5.4305

(𝑆 − 0.8234)2 + 1.446812
 

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
=

−2.47256(𝑆 − 0.8234) − 2.03591 + 5.4305

(𝑆 − 0.8234)2 + 1.446812
 

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
=

−2.47256(𝑆 − 0.8234) + 3.3946

(𝑆 − 0.8234)2 + 1.446812
 

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
=

−2.47256(𝑆 − 0.8234)

(𝑆 − 0.8234)2 + 1.446812
+

3.3946 ×
1.202835
1.202835

(𝑆 − 0.8234)2 + 1.446812
 

−2.47256𝑆 + 5.4305

𝑆2 − 1.6468𝑆 + 2.1248
=

−2.47256(𝑆 − 0.8234)

(𝑆 − 0.8234)2 + 1.446812
+ 2.82217

1.202835

(𝑆 − 0.8234)2 + 1.446812
 

𝑋2(𝑆) =  
2.2

𝑆
+

0.2725

𝑆 − 2.3532
−

2.47256(𝑆 − 0.8234)

(𝑆 − 0.8234)2 + 1.446812
+ 2.82217

1.202835

(𝑆 − 0.8234)2 + 1.446812
 

𝑥2(𝑡) = 2.2 + 0.2725𝑒2.3532𝑡 − 2.47256𝑒0.8234𝑡 cos(1.202835𝑡) + 2.82217𝑒0.8234𝑡 sin(1.202835𝑡) 
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Matlab Code: 
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Another example using Matlab Code: 

 

 

Example (25): 

Consider a unity-feedback with unit-step-input control system given by: 

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 7

𝑑𝑐(𝑡)

𝑑𝑡
+ 9𝑐(𝑡) = 2

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑟(𝑡) 

a) Using direct decomposition, write the system dynamic equation in matrix form. 

b) Find the state transition equation x(t), if x1(0) = x2(0) =1. 
c) Calculate the values of x1(t) and x2(t) after 2 ms. 
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Convert the system D.E. to T.F. 

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 7

𝑑𝑐(𝑡)

𝑑𝑡
+ 9𝑐(𝑡) = 2

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑟(𝑡) 

𝑆2𝐶(𝑠) + 7𝑆𝐶(𝑠) + 9𝐶(𝑠) = 2𝑆𝑅(𝑠) + 𝑅(𝑠) 

𝐶(𝑠)[𝑆2 + 7𝑆 + 9] = 𝑅(𝑠)[2𝑆 + 1] 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆 + 1

𝑆2 + 7𝑆 + 9
= 2

𝑆 + 0.5

𝑆2 + 7𝑆 + 9
 

Step #1 

All the power of S must be negative; this can be achieved by dividing by S2 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−1 + 0.5𝑆−2

1 + 7𝑆−1 + 9𝑆−2
 

Step #2 

Multiply both the numerator and denominator by dummy variable X(s) 

𝐶(𝑠)

𝑅(𝑠)
=

𝑆−1 + 0.5𝑆−2

1 + 7𝑆−1 + 9𝑆−2
×

𝑋(𝑠)

𝑋(𝑠)
 

Step #3 

Equating numerators 

𝐶(𝑠) = (𝑆−1 + 0.5𝑆−2). 𝑋(𝑠) 

𝐶(𝑠) = 𝑆−1𝑋(𝑠) + 0.5𝑆−2𝑋(𝑠)        (1) 

Step #4 

Equating denominators 

𝑅(𝑠) = (1 + 7𝑆−1 + 9𝑆−2). 𝑋(𝑠) 

𝑅(𝑠) = 𝑋(𝑠) + 7𝑆−1𝑋(𝑠) + 9𝑆−2𝑋(𝑠) 

𝑋(𝑠) = 𝑅(𝑠) − 7𝑆−1𝑋(𝑠) − 9𝑆−2𝑋(𝑠)             (2) 

Step #5 

Using Eqns. (1) and (2) to draw the sate diagram as shown below: 

 

 

 

 

 

 

 

 

 

Step #6 

Rename the state variables (after each integrator) from right to left, and remove the integrator S-1 as 

shown in the state diagram given below. 

 

 S-1 X(s) S-2 X(s) 

R(s) 

S-1 0.5 S-1 

C(s) 

1 

2 

− 7  

− 9 
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Step #7 

Write the state and output equation [Dynamic Equation] as follows: 

�̇�1(𝑡) = 𝑥2 

�̇�2(𝑡) = 2𝑟 − 9𝑥1 − 7𝑥2 

𝑐 = 0.5𝑥1 + 𝑥2 

[
�̇�1

�̇�2
] = [

0 1
−9 −7

] [
𝑥1

𝑥2
] + [

0
2
]  𝑢 

[𝐶] = [0.5 1] [
𝑥1

𝑥2
] + [0] 𝑟(𝑡) 

 

To calculate the state transition equation X(s):  

𝑋(𝑠) = [𝑠𝐼 − 𝐴]−1𝑥(0) + [𝑠𝐼 − 𝐴]−1𝐵 𝑅(𝑠) 

 

The first term is: 

[𝑠𝐼 − 𝐴] = [
𝑆 0
0 𝑆

] − [
0 1

−9 −7
] = [

𝑆 −1
9 𝑆 + 7

] 

Φ(𝑠) = [𝑠𝐼 − 𝐴]−1 =
1

∆
[
𝑆 + 7 1
−9 𝑆

] 

∆= det(𝑠𝐼 − 𝐴) = 𝑆(𝑆 + 7) + 9 = 𝑆2 + 7𝑆 + 9 = (𝑆 + 1.697)(𝑆 + 5.303) 

Φ(𝑠)𝑥(0) =
1

∆
[
𝑆 + 7 1
−9 𝑆

] [
1
1
] =

1

∆
[
𝑆 + 8
𝑆 − 9

] 

The second part of X(s) equation is: 

[𝑠𝐼 − 𝐴]−1𝐵 𝑅(𝑠) =
1

∆
[
𝑆 + 7 1
−9 𝑆

] [
0
2
]
1

𝑆
=

1

∆𝑆
[
2
2𝑆

] 

(𝑠) =
1

∆
[
𝑆 + 8
𝑆 − 9

] +
1

∆𝑆
[
2
2𝑆

] =

[
 
 
 
 

𝑆2 + 8𝑆 + 2

𝑆(𝑆 + 1.697)(𝑆 + 5.303)
𝑆 − 7

(𝑆 + 1.697)(𝑆 + 5.303) ]
 
 
 
 

 

 

To get x(t), we must get L-1, therefore we must obtain the partial fractions for the two 

fractions given in X(s) equation: 

 

R(s) 

0.5 

C(s) 

1 

2 

− 7  

− 9 

. 
X1 

X1 X2 

X2 
. 
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𝑆2 + 8𝑆 + 2

𝑆(𝑆 + 1.697)(𝑆 + 5.303)
=

𝐴

𝑆
+

𝐵

(𝑆 + 1.697)
+

𝐶

(𝑆 + 5.303)
 

𝑆2 + 8𝑆 + 2 = 𝐴(𝑆 + 1.697)(𝑆 + 5.303) + 𝐵𝑆(𝑆 + 5.303) + 𝐶𝑆(𝑆 + 1.697) 

At S=0 →  2 = 𝐴(1.697)(5.303) → A = 0.2222 

At S=-1.697 →  −8.6962 = 𝐵(−1.697)(3.606) → B = 1.4211 

At S=-5.303 →  −12.3022 = 𝐶(−5.303)(−3.606) → C = -0.6433 

𝑆 − 7

(𝑆 + 1.697)(𝑆 + 5.303)
=

𝐴

(𝑆 + 1.697)
+

𝐵

(𝑆 + 5.303)
 

𝑆 − 7 = 𝐴(𝑆 + 5.303) + 𝐵(𝑆 + 1.697) 

At S=-1.697 →  −8.697 = 𝐴(3.606) → A = -2.4118 

At S=-5.303 →  −12.303 = 𝐵(−3.606) → B = 3.4118 

Taking inverse Laplace 

𝑥(𝑡) = [0.2222 + 1.4211𝑒−1.697𝑡 − 0.6433𝑒−5.303𝑡

−2.4118𝑒−1.697𝑡 + 3.4118𝑒−5.303𝑡 ] 

After 2ms 

𝑥1(𝑡) = 0.2222 + 1.4211𝑒−1.697×0.002 − 0.6433𝑒−5.303×0.002 = 1.001972 

𝑥2(𝑡) = −2.4118𝑒−1.697×0.002 + 3.4118𝑒−5.303×0.002 = 0.9722 
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Sheet 4 (State Variables) 

Problem #1 

Drive the dynamic equation for the electric circuit shown below. Consider the 

suitable state variables. 

 
Problem #2 

Using Direct Decomposition, find the dynamic equation of the following systems: 

 

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 2

𝑑𝑐(𝑡)

𝑑𝑡
+ 𝑐(𝑡) + ∫𝑐(𝑡) = 𝑟(𝑡) 

𝑑3𝑐(𝑡)

𝑑𝑡3
+ 6

𝑑𝑐(𝑡)

𝑑𝑡
+ 5𝑐(𝑡) = 5𝑒(𝑡) 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆2 + 8𝑆 + 2

𝑆3 + 6𝑆2 + 12𝑆 + 10
 

𝑌(𝑠)

𝑈(𝑠)
=

10(𝑆 + 3)

(𝑆 + 4)3(𝑆 + 5)
 

Problem #3 

Using Cascade Decomposition, find the dynamic equation of the following systems: 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆2 + 8𝑆 + 2

𝑆3 + 6𝑆2 + 12𝑆 + 10
 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆2 + 14𝑆 + 24

𝑆3 + 12𝑆2 + 44𝑆 + 48
 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

𝑆3 + 6𝑆2 + 11𝑆 + 6
 

𝑌(𝑠)

𝑈(𝑠)
=

10(𝑆 + 3)

(𝑆 + 4)3(𝑆 + 5)
 

𝑌(𝑠)

𝑈(𝑠)
=

100(𝑆 + 2)(𝑆 + 5)

(𝑆 + 1)(𝑆 + 10)(𝑆 + 40)
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Problem #4 

Using Parallel Decomposition, find the dynamic equation of the following systems: 

matrix A must be in diagonal form or Jordan Canonical form. 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆2 + 8𝑆 + 2

𝑆3 + 6𝑆2 + 12𝑆 + 10
 

𝐶(𝑠)

𝑅(𝑠)
=

2𝑆2 + 14𝑆 + 24

𝑆3 + 12𝑆2 + 44𝑆 + 48
 

𝑌(𝑠)

𝑈(𝑠)
=

5𝑆 + 20

𝑆3 + 6𝑆2 + 11𝑆 + 6
 

𝑌(𝑠)

𝑈(𝑠)
=

100(𝑆 + 2)(𝑆 + 5)

(𝑆 + 1)(𝑆 + 10)(𝑆 + 10)(𝑆 + 10)
 

𝑌(𝑠)

𝑈(𝑠)
=

10(𝑆 + 3)

(𝑆 + 4)2(𝑆 + 5)
 

Problem #5 

The dynamic equation of linear time-invariant system is represented by: 

[

�̇�1

�̇�2

�̇�3

] = [
−1 1 0
0 −1 1
0 0 −1

] [
𝑥1

𝑥2
𝑥3

] + [
0
0
1
]  𝑢(𝑡) 

𝑦(𝑡) =  [1 1 0] [
𝑥1

𝑥2
𝑥3

]     &   [

𝑥1(0)
𝑥2(0)
𝑥3(0)

] =  [
0
2
1
] 

a) Find the state transition matrix, 

b) Find an expression for x(t) and y(t) 

 
Problem #6 

Consider the system described by 

𝑑3𝑦(𝑡)

𝑑𝑡3
+ 6

𝑑2𝑦(𝑡)

𝑑𝑡2
+ 11

𝑑𝑦(𝑡)

𝑑𝑡
+ 6𝑦(𝑡) = 6𝑢(𝑡) 

Find: a) the dynamic equation in matrix form 

b) Draw the block diagram represent this system, 

c) Calculate the eigen values, 

d) Diagonalize this system, 

e) Calculate the state equation when x(0)=[1 0 1]T and unit step input, 
 

Problem #7 
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A linear multivariable system is described by the following differential equations: 

𝑑2𝑐1(𝑡)

𝑑𝑡2
+

𝑑𝑐1(𝑡)

𝑑𝑡
+ 2𝑐1(𝑡) − 2𝑐2(𝑡) = 𝑟1(𝑡) 

𝑑2𝑐2(𝑡)

𝑑𝑡2
+ 𝑐2(𝑡) − 𝑐1(𝑡) = 𝑟2(𝑡) 

a) Write the state equation and output equation in matrix form, 

b) Draw the block diagram representing this system. 

 

Problem #8 

For the control systems given below: 

a) Write the dynamic equation 

b) Find the system transfer function 

c) Calculate the state transition equation considering r(t) is unit step and x(0)=[1 0 1]T 

d) Write the Matlab code that used for (a) & (b). Give screen shot for the m file as well 

as Matlab run.  

  
 

Problem #9 
Consider a unity-feedback with unit-step-input control system given by: 

𝑑2𝑐(𝑡)

𝑑𝑡2
+ 7

𝑑𝑐(𝑡)

𝑑𝑡
+ 9𝑐(𝑡) = 2

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑟(𝑡) 

a) Write the system dynamic equation in matrix form. 

b) Find the state transition equation x(t), if x1(0) = x2(0) =1. 
c) Calculate the values of x1(t) and x2(t) after 2 ms. 
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